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Summary

The proximity of the Earth to the Sun offers a unique opportunity to study different plasma
phenomena that occur in its atmosphere, which are unattainable in plasma laboratories.
Advances in the instruments used for solar observations brought a wealth of high-quality,
low-noise data that give insight into the dynamics of small scales (∼70 km) in the solar
atmosphere and its magnetic properties. Along with the developments in instrumenta-
tion, methods used to analyse these observations have also improved, allowing for more
feasible inference of different physical parameters of the solar atmosphere, such as tem-
perature, velocity and magnetic field. Concurrently, the solar atmosphere can also be used
as an atomic physics laboratory to infer atomic parameters.

Over many decades, the spatially averaged disc-centre quiet-sun spectrum has been
used to infer the transition probability (also known as log(g f )) of many spectral lines,
predominantly in the visible and infrared wavelengths. The advancement in this field was
achieved with the pixel-by-pixel based inference of the log(g f ) parameter from spatially
resolved spectropolarimetric observations. In this thesis, I developed a new method called
the coupled method, which infers spatially coupled atomic line parameters from high spa-
tial and spectral resolution spectropolarimetric observations of the solar atmosphere. The
coupling of atomic parameters across the observed field of view is a natural consequence
of atomic parameters being independent of the underlying physical structure of the solar
atmosphere. The coupled method simultaneously fits all observed spectra from a given
field of view and infers the atmospheric and atomic parameters self-consistently. Part of
this thesis is also dedicated to developing a new inversion code in which I have integrated
the coupled method.

The strength of the coupled method is in resolving the contribution of blended spec-
tral lines and retrieving their log(g f ) parameter and the central wavelength reliably. This
result is achieved by coupling spectra emerging from atmospheres with very diverse ther-
modynamic and magnetic structures, such as those describing atmospheres of umbra,
penumbra, granules and intergranular lanes. This result is essential for analysing near ul-
traviolet observations of the solar atmosphere, where spectral lines are severely blended.
Many of these lines have poorly determined atomic parameters that impact the inference
of atmospheric parameters from this spectral region.

The coupled method is tested on spectra formed under the assumption of local ther-
modynamic equilibrium (LTE), where the populations of atomic levels are determined
from the Boltzmann-Saha distribution. The method can be extended to infer other atomic
parameters of lines formed under the assumption of LTE, such as the lower excitation
level, abundance, Landé g-factors, and collisional broadening coefficients. However, it is
also flexible enough to be applied to the non-LTE lines, for which the LTE assumption
fails. The coupled method is applicable to spectral lines from the near ultraviolet to the
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infrared.
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Introduction

The Sun is a G2 main-sequence star with an effective temperature of 5777 K, radiating
most of its energy in the visible wavelength range around 500 nm (Stix 2004). Even
though it is the closest star to the Earth, sending a space probe to obtain in situ measure-
ments of the physical conditions in its atmosphere is impossible. The observable layers
of the Sun from which the radiation can escape freely, without any interaction with the
surrounding particles, make up the solar atmosphere. The Parker Solar Probe (Fox et al.
2016) is the only spacecraft that has successfully reached the outermost layers of the solar
atmosphere called the corona and obtained in situ measurements from its million-degree
plasma (Raouafi et al. 2023). Solar physicists are compelled to rely predominantly on ob-
servations obtained remotely using space-based and ground-based solar telescopes. The
currently available suite of solar telescopes and instruments allows for routine observa-
tions of features in the solar atmosphere and can resolve structures with horizontal spatial
scales as small as roughly 60− 70 km (Schlichenmaier et al. 2016, Campbell et al. 2023).

Different features are observed on the solar surface, such as bright granules and dark
intergranular lanes, which are a manifestation of the convective plasma motion occurring
in the solar convective zone; sunspots and pores as concentrations of strong magnetic
fields that inhibit the plasma convection. In higher layers of the solar atmosphere, ob-
servations show bright structures surrounding sunspots called chromospheric plages, and
they have counterparts at the solar surface named faculae. Observations of even higher
atmospheric layers of the Sun show a plethora of features having very complex forms that
are structured by the magnetic field, such as prominences, filaments, spicules and coro-
nal loops. The Sun is used to better understand distant stars that are poorly resolved1,
test plasma theories in environments unattainable in laboratories on Earth and study the
interaction between plasma, magnetic field and radiation field.

Physical conditions prevailing in the solar atmosphere are inferred by analysing the
intensity variation in different wavelength bands (photometry) or its variation with wave-
length (spectroscopy). Radiation emitted from a solar (or stellar) surface passes through
its atmosphere where it interacts with different atoms, ions and molecules2. These interac-
tions that imprint the physical conditions of the solar atmosphere onto the radiation field
can be of two kinds: continuum and line processes. Spectral lines, superimposed on the
continuum, result from electronic transitions between bound energy levels of atoms.

In the solar atmosphere, radiation is polarised by the magnetic field through the Zee-

1Only the surface of giant stars can be imaged using interferometric measurements (e.g., Roettenbacher
et al. 2017). However, the resolution of these observations is incomparable to the resolution of solar obser-
vations.

2Throughout the thesis atoms, ions, and molecules will be referred to uniformly as atoms to simplify
writing, unless the explanation requires a distinction between them.
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man and Hanle effects and by scattering processes because of the anisotropy of the ra-
diation field close to the solar surface. Spectropolarimetry is an analysis technique that
studies the intensity and polarisation variations with wavelength. Spectropolarimetric a-
nalysis of different spectral line profiles observed in the solar spectrum is used to infer
depth variations of the physical parameters in the solar atmosphere, such as the tempera-
ture, velocity and magnetic field vector. The generation, transport and orientation of the
magnetic field vector, extending from the deepest layers of the solar atmosphere up to the
outer layers, is important to understand the structure of the solar atmosphere.

Inference of physical parameters from spectral lines relies on the precision of adopted
parameters describing atomic species: energies of atomic levels, transition probabilities,
Landé g-factors, central wavelengths of spectral lines, broadening coefficients, abun-
dances, etc. These atomic parameters can be estimated in laboratory setups (e.g., Black-
well & Collins 1972), from theoretical computations of atomic models (e.g., Cowan 1981)
or from the observed stellar (e.g., Laverick 2019) and solar spectra (e.g., Borrero et al.
2003). Despite these techniques, many spectral lines that are observed in the solar spec-
trum (as well as in some stellar spectra) have poorly determined atomic parameters (Ku-
rucz 2002, Shapiro et al. 2010) or are not even identified (Nave et al. 2017).

This thesis presents a novel technique which can be used to infer the atomic parame-
ters from high spatial and spectral resolution spectropolarimetric observations of the solar
atmosphere. We show that the atomic parameters can be inferred using a spectropolari-
metric inversion method, which iteratively corrects atmospheric and atomic parameters
simultaneously until the best match with the observations is achieved. The inversion
method developed in the thesis relies on the self-consistent inference of the atmospheric
and atomic parameters by imposing a coupling in the latter. This thesis aims to com-
plement high-quality laboratory measurements and improve the currently available the-
oretical estimates of atomic parameters for spectral lines in wavelengths from the near
ultraviolet to the infrared region.

The thesis has the following structure: Chapter 1 briefly describes the thermodynamic
and magnetic properties of the solar atmosphere. Furthermore, the radiative transfer the-
ory of polarised light through a solar/stellar atmosphere is presented. After that, different
methods for estimating the atomic parameters are reviewed, which will help develop a
sense of uncertainties in the inferred atomic parameters. The radiative transfer theory
from the first chapter establishes a basis for understanding the inversion methods de-
scribed in Chapter 2 and the new inversion method developed in this thesis. Chapter 3
describes the new inversion code, globin, that has implemented an inversion method for
coupled inference of atomic line parameters. The chapter focuses on the implementation
and different techniques for optimising the inversion algorithm to retrieve reliable atomic
line parameters. Chapter 4 lists some preliminary results and promising ideas to which
we intend to apply the globin code and the coupled method for inferring atomic line
parameters. The conclusions of the work presented in this thesis are given in Chapter 5.
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1 Theoretical background

1.1 The solar atmosphere

Solar energy is generated in nuclear fusion processes in the solar core as high energy γ
photons that interact with the surrounding plasma and deposit their energy. The transfer
of energy by radiation inside the Sun establishes a region known as the radiative zone that
extends from the edge of the solar core (at 0.25 R⊙) up to the tachocline at ∼0.7 R⊙. From
the tachocline to the surface of the Sun (the convective zone), the energy is predominantly
transferred by convective plasma motions. Above the solar surface, the energy is again
predominately transported by radiation throughout the solar atmosphere.

The solar photosphere is the deepest visible layer of the solar atmosphere from which
the majority of radiation is emitted, and it lies on top of the convective zone. The char-
acteristic features observed in the solar photosphere are granules, which are surrounded
by intergranular lanes (Fig. 1.1). The granules are convective blobs that transport heat
from the convective zone to the surface. In the granule centre, hot plasma travels up-
wards until it reaches the surface. Then, the plasma cools through radiative emission and
has a predominantly horizontal motion. The cool plasma gathered in the intergranular
lanes is heavier (denser) than the surrounding material and starts to sink. Sunk plasma
gets heated up again, and the whole process repeats. The average lifetime of a granule
is around 6 min, where the lifetime is dependent on a granule size: larger granules live
longer (Bahng & Schwarzschild 1961). On average, granules have a diameter of around
1 Mm.

Since the central regions of granules carry hot plasma, these regions are brighter than
the surrounding intergranular regions, which are cooler and emit less radiation (Fig. 1.1).
The regions on the Sun which consist predominantly of granules and intergranular lanes
are known as quiet-sun regions, and they are permeated with hG magnetic fields (e.g.,
Orozco Suárez et al. 2007) producing weak polarisation signals. The photospheric plasma
motion governs the magnetic field structure in the quiet-sun regions. The magnetic field
is said to be frozen into the plasma because the magnetic energy is lower than the kinetic
plasma energy (Alfvén theorem; Alfvén 1942). The ratio of the kinetic plasma energy
density to the magnetic field energy density is known as a plasma β parameter (e.g.,
Goedbloed & Poedts 2004) and in the quiet-sun region in the photosphere, it is much
larger than unity (see for example Fig. 6 from Jurčák et al. 2020).

The horizontal plasma motions from the granule centres carry the frozen-in magnetic
field into the intergranular lanes, thus forming magnetic flux concentrations. This increase
in the magnetic energy causes the plasma β parameter to drop below unity. Because of the
increase in the magnetic energy, the plasma down-flow is hindered, and the pressure scale

11



1 Theoretical background

Figure 1.1. The granules and intergranular lanes observed with the Sunrise/IMaX
instrument (Martínez Pillet et al. 2011). Bright features are the centres of convective
cells that transport hot plasma to the surface. Dark regions are intergranular lanes
where cold plasma returns to the convective zone.

of the local plasma is altered, allowing the radiation to escape from deeper layers. Since
the radiation is emitted from deeper layers, which are hotter than the surface layers, these
magnetic concentrations are observed as bright regions in the cool intergranular lanes.
Owing to their nature, they are named magnetic bright points and are used as tracers of
kG magnetic fields (e.g., Sánchez Almeida et al. 2010).

Larger concentrations of a strong magnetic field can entirely hinder the plasma con-
vection, which results in sunspot formation (Borrero & Ichimoto 2011). Sunspots are
large dark patches observed on the solar surface with two distinct regions: a central dark
part called the umbra and a brighter part surrounding it named penumbra (Fig. 1.2). The
sunspot magnetic field is predominantly vertical in the umbra and transits into a horizon-
tal field in the penumbra. The characteristic photospheric magnetic field strength in the
umbra is 2−3 kG (Solanki 2003), while Castellanos Durán et al. (2020) found a magnetic
field strength up to 8.2 kG in a sunspot light bridge.

The penumbra is characterised by interchanging bright (intraspines) and dark (spines)
filaments that are oriented radially from the sunspot’s umbra (Lites et al. 1993) having a
magnetic field strength that is a few times weaker than the maximum umbral one. Siu-

12



1.1 The solar atmosphere

Tapia et al. (2017, 2019) found that the penumbral magnetic field can reach very high
strengths, above 7 kG, in regions characterised with supersonic down-flows, which were
later confirmed by Castellanos Durán et al. (2023). The intraspines are characterised by a
more horizontal magnetic field than the magnetic field in spines, which are seen as umbral
extensions into the penumbra. The regions in the photosphere occupied by a sunspot or
group of sunspots are called active regions.

Figure 1.2. A sunspot observed in the G-band with the GREGOR/HiFi+ instrument
(Denker et al. 2023). The dark central part of the sunspot is called the umbra, while
the brighter fibril structure surrounding the umbra is called the penumbra (Image
courtesy of Juan Sebastián Castellanos Durán).

The low brightness of the umbra indicates that it is cooler than the quiet-sun region.
Observed spectra of umbrae show molecular spectral lines (e.g. CN, FeH, TiO; Sotirovski
1971), which form only in low-temperature layers in the atmosphere. These indicators
constrain the umbra temperature in the photosphere to around 3000 − 4500 K (e.g., Wes-
tendorp Plaza et al. 2001). Meanwhile, the penumbral structure is characterised by a
brightness variation due to spines and intraspines. The average brightness of intraspines
is comparable to the brightness of a quiet-sun region (see Fig. 1.2), indicating that they
have a similar temperature (see for example Fig. 3 from Siu-Tapia et al. 2017).

The mass density of the solar atmosphere in the quiet-sun region drops with height
(Fig. 1.3), causing the atmosphere to be more transparent (less radiation is absorbed) to

13



1 Theoretical background

radiation emitted from the base of the photosphere. The emitted radiation thus carries
energy out of the atmosphere, which causes a drop in the temperature in the photosphere
(Fig. 1.3). At a height of around 500 km above the surface, the temperature in the quiet-
sun region reaches its minimum of about 4200 K (Vernazza et al. 1981). In layers above,
the temperature increases, reaching values of 10 000 K, after which the temperature sud-
denly jumps to 1 million K. The solar chromosphere is the layer in the solar atmosphere
between the temperature minimum and the sudden temperature increase.
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Figure 1.3. Temperature (full line) and density (dashed line) profiles with height in
the 1D atmospheric model of the quiet Sun from Vernazza et al. (1981).

The chromospheric brightness in the continuum is insignificant compared to the pho-
tospheric brightness because of the much lower density. The chromosphere is either ob-
served during a total solar eclipse as a thin bright halo surrounding the solar disc or in
narrowband filters (filtergram observations) of spectral lines, such as Hα, Ca II H&K,
Ca II infrared triplet, Mg II h&k. Observations in these lines demonstrate that the chro-
mosphere is a dynamic and feature-rich region.

Observations in the Hα line show fibril-like structures (Fig. 1.4) that can sometimes
be explained as hot plasma being trapped by the chromospheric magnetic field (e.g., de la
Cruz Rodríguez & Socas-Navarro 2011). Filtergram observations of the chromosphere in
the core of the strong Ca II H&K lines also reveal bright regions (Fig. 1.5) of two kinds:
bright patches called plages that are associated with small magnetic filed concentrations in
the photosphere and network-like structures above quiet-sun regions. The chromospheric
bright network outlines what is known as a supergranular cell, which is characterised by
a large-scale horizontal motion of photospheric plasma (Leighton et al. 1962), having a
typical size of 30 Mm, encompassing tens of granules. This large-scale horizontal mo-
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1.1 The solar atmosphere

tion of photospheric plasma carries the magnetic field into the supergranular boundaries,
increasing the magnetic energy. Following a decrease of the atmospheric mass density
with height in the chromosphere, the horizontal pressure balance between the interior and
the exterior of the magnetic concentrations is disrupted in regions between supergranules.
The magnetic field strength must decrease with height to preserve this pressure balance,
causing the field lines to funnel out. The funnelling of the magnetic field thus conserves
the magnetic flux with height. This funnelling is observed as a wide bright region in the
chromosphere, which traps hot chromospheric plasma because the plasma β parameter is
below unity.

Figure 1.4. Chromospheric fibrils observed in the core of Hα line with the Dutch
Open Telescope (Hammerschlag & Bettonvil 1998).

The narrow region in the solar atmosphere where the temperature and density change
abruptly is called the transition region (Fig. 1.3). Due to high temperature reaching mil-
lions of degrees, the transition region is observed in lines from higher ionisation stages of
elements, such as oxygen, silicon, and carbon.

The corona is the hottest region of the solar atmosphere, located above the transition
region and reaching temperatures of a few million degrees. The corona is observed either
during a total solar eclipse as a large bright halo that surrounds the occulted Sun, using
instruments called coronagraphs that have a central obscuration mimicking a solar eclipse,
or in X-ray or ultraviolet lies of highly ionized elements, such as Si VIII, Mg X, Fe XV.
These spectral lines are observed in the corona due to the high energy necessary for their
ionisation, supplied by the high coronal temperature. Additionally, radio observations in
the frequency range of 10 − 90 MHz are also used to study the solar corona (e.g., Vocks
et al. 2018).
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1 Theoretical background

Figure 1.5. The chromospheric network and plage regions around a sunspot observed
in Ca II H line with the Dutch Open Telescope (Hammerschlag & Bettonvil 1998).

Modelling the solar interior indicates that the temperature decreases towards the solar
surface (Christensen-Dalsgaard et al. 1996), and this continues in the solar atmosphere
until it reaches the temperature minimum (see Fig. 1.3). The temperature increase from
the temperature minimum to the outer layers of the solar atmosphere is an exciting and
puzzling problem to solve. The magnetic field is considered a mediator, rooted in the
convective zone and extending into the corona. It can transport energy between atmo-
spheric layers and increase the temperature in the outer layers by the dissipation of the
transported energy. The probable causes for heating the solar atmosphere are either the
dissipation of magneto-acoustic waves, the reconnection of magnetic field lines, or the
Ohmic dissipation in the presence of a strong magnetic field gradient. The heating of the
solar atmosphere is one of the reasons why many solar physicists are interested in un-
derstanding the origin of magnetic fields and their structure from the photosphere to the
corona.

1.2 Radiative transfer theory
Radiation that passes through the solar atmosphere and arrives at the observer is modelled
as an electromagnetic wave. It is described as an oscillation of electric and magnetic fields
that are mutually perpendicular to the propagation direction of the radiation. Because of
this characteristic, the wave behaviour of an electromagnetic wave can be fully described
by considering only the electric field component. The specific intensity of an electromag-
netic wave that falls on a detector averaged over some time interval is I ∝ ⟨E2

0⟩, where E0

is the amplitude of the electric field of a wave.

16



1.2 Radiative transfer theory

It is necessary to consider all possible interactions between electromagnetic waves
and particles within stellar atmospheres to understand and analyse observed spectra of
stars. In general, the spectrum is composed of a continuum upon which spectral lines
are superimposed. Frequent particle collisions between the absorption and emission of
radiation establish the thermodynamic equilibrium distribution of the radiation field over
wavelengths represented by the Planck distribution. This picture is valid only in the stellar
interiors where the radiation cannot escape freely and in the deepest layer of stellar atmo-
spheres (photosphere). An observed stellar continuum is closely described by the Planck
distribution, indicating that the radiation in the continuum is emitted from a high-density
layer where collisions are frequent enough. On the contrary, absorption lines observed
in stellar spectra indicate that the radiation field in the higher atmospheric layers devi-
ates from the Planck distribution. The radiative transfer theory models the radiation field
transport through the stellar atmosphere (or other absorbing and emitting media).

This section is based on the radiative transfer textbooks by Stenflo (1994), del Toro
Iniesta (2003), Rutten (2003), Landi Degl’Innocenti & Landolfi (2004), Gray (2008),
Hubeny & Mihalas (2014). The interested reader is encouraged to consult these textbooks
for more in-depth descriptions. The following section will focus on the non-polarised
radiation of specific intensity I and its interaction with atmospheric particles. In the sub-
sequent subsections, the transfer of polarised radiation will be introduced along with the
formation of spectral lines in magnetised atmospheres.

1.2.1 Radiative transfer equation (non-polarised case)
The specific intensity I is a function of the position in the atmosphere, r, the direction of
propagation, l, the wavelength, λ, and time, t. The radiative transfer equation describes
the energy exchange between radiation and particles during their interactions, conserving
the total energy of the system (radiation energy plus particle energy).

Let us consider a parcel of plasma containing different particles (atoms, ions, elec-
trons). The change of the incoming intensity along a ray, dIλ(r, l, t), is equal to the dif-
ference between the intensity emitted by the parcel in the direction l and the amount of
incoming intensity removed from the ray in the same direction. Assuming that the parcel
of plasma has a thickness ds along the direction l, the radiative transfer equation is:

dIλ(r, l, t)
ds

= ηλ(r, l, t) − χλ(r, l, t) · Iλ(r, l, t), (1.1)

where Iλ(r, l, t) is the incoming intensity, and ηλ(r, l, t) and χλ(r, l, t) are the emission
and extinction coefficients per unit length, respectively. The extinction coefficient takes
into account the reduction in the intensity by the absorption and scattering processes (see
Sec 1.2.2.1 for more details). Throughout the thesis, we will refer to χλ(r, l, t) simply as
the absorption coefficient since we will not deal with the radiation scattering here.

Eq. (1.1) is general and can be applied to any geometry of interest. However, the usual
approach in the study of radiative transfer in stellar atmospheres is to adopt the Cartesian
coordinate system1 in which the radiative transfer equation is:

1A spherical coordinate system is more appropriate for giant stars with extended atmospheres.
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1 Theoretical background

1
c
∂Iλ(r, l, t)

∂t
+ sin θ cosΦ

∂Iλ(r, l, t)
∂x

+ sin θ sinΦ
∂Iλ(r, l, t)

∂y
+ cos θ

Iλ(r, l, t)
∂z

= ηλ(r, l, t) − χλ(r, l, t) · Iλ(r, l, t),
(1.2)

where θ is the polar angle with respect to the vertical direction z directed towards an
observer, and Φ is the azimuthal angle in the xy plane in respect to the x axis.

For simplicity, we will assume that the specific intensity is time-independent, ∂Iλ
∂t = 0.

This assumption originates from the fact that the radiation propagates instantly from one
side of an atmosphere to the other2. Leenaarts et al. (2012) showed that we have to
solve a time-independent Eq. (1.2) to model chromospheric fibrils observed in the Hα
line properly.

Further simplification in the radiative transfer equation is achieved by disregarding
the horizontal transfer of radiation, ∂Iλ

∂x =
∂Iλ
∂y = 0 (azimuthal symmetry). This leaves

only the change in the intensity along the vertical direction z and along angle θ. All these
assumptions simplify the radiative transfer equation to:

µ ·
dIλ(z, µ)

dz
= ηλ(z, µ) − χλ(z, µ) · Iλ(z, µ), (1.3)

where µ = cos(θ). Another form of the radiative transfer equation often used in practice
is derived after dividing Eq. (1.3) by the negative absorption coefficient, which yields:

µ ·
dIλ(τ, µ)

dτ
= Iλ(τ, µ) − S λ(τ, µ), (1.4)

where we introduce two new variables: optical depth τλ and the source function S λ.
The optical depth measures the transparency of an atmosphere at wavelength λ where

dτλ = −χλ · dz. The outer boundary of an atmosphere is at an observer, for which τ =
03. The optical depth scale increases inwards into the atmosphere where τλ =

∫ z2

z1
χλdz

represents the number of interactions a photon with wavelength λ experiences on its path
from z2 to z1, assuming that τλ = 0 at z1. The medium is said to be optically thick if
τλ > 1, while it is optically thin for τλ < 1. A medium can be optically thick and thin at
the same time, depending on the wavelength at which we observe it.

The source function is defined as the ratio of the emission to the absorption coefficient,
S λ = ηλ/χλ, and it can be interpreted as a measure of emission per optical depth.

Assuming that the source function is known, Eq. (1.4) is solved to obtain the outgoing
intensity for any direction µ > 0, which is known as the formal solution:

Iλ(τ1, µ) = Iλ(τ2, µ) · e−(τ2−τ1)/µ +

∫ τ2

τ1

S λ(tλ) · e−(tλ−τ1)/µdtλ
µ
, (1.5)

where τ1 < τ2. The first term represents the attenuation of the incoming intensity,
Iλ(τ2, µ), at the lower boundary, τ2, on the passage through the slab of optical thickness

2If we would travel with the speed of light, it would take us around 7 ms to escape from the atmosphere.
3In practice, we limit the outer boundary of an atmosphere to be at, e.g., log τ = −6. The choice of this

value depends on the wavelength region and spectral lines we are modelling.
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1.2 Radiative transfer theory

τ2 − τ1, while the second term represents the addition of intensity into the direction µ by
the slab.

The stellar atmosphere is commonly treated as a semi-infinite medium with the deep-
est layer at τ2 = ∞

4 and the outer boundary at τ1 = 0. The incident intensity at the outer
boundary in the semi-infinite model is assumed to be Iλ(τ1 = 0, µ) = 0, while at the inner
boundary, we impose that:

lim
τ2→∞

Iλ(τ2, µ) · e−τ2/µ = 0. (1.6)

This boundary condition assures that the solution of the radiative transfer equation does
not depend on the intensity coming at the lower boundary of the atmosphere. In the
numerical solution to the radiative transfer equation, the intensity at the lower boundary
takes the value of the source function and its gradient (diffusion limit). The boundary
conditions for a semi-infinite atmosphere simplify the formal solution of the radiative
transfer equation to:

Iλ(0, µ) =
∫ ∞

0
S λ(tλ) · e−tλ/µdtλ

µ
. (1.7)

If the source function changes linearly with the optical depth, we can easily solve the
integral in Eq. (1.7). This solution is known as the Eddington-Barbie solution, which is:

Iλ(0, µ) = S (τλ = µ). (1.8)

The intensity emitted at the disc centre, µ = 1, equals the source function at the depth
τλ = 1. The optical depth at 5000 Å, τ5000, is regularly used for atmospheric models
as a reference depth scale. The depth in an atmosphere at which τ5000 = 1 is generally
considered to be the surface of the Sun. Therefore, radiation at wavelength λ is said to be
emitted from the atmospheric height at which τλ = 1.

The linear change of the source function is an approximation of an actual source func-
tion. We must compute the emission and absorption coefficients throughout the atmo-
sphere to compute the source function. Once it is known, solving the radiative transfer
equation is straightforward. The following subsections describe the calculation of the
emission and absorption coefficients.

1.2.2 The emission and absorption coefficients
Interactions between radiation and particles define the magnitude of the intensity removed
from and added to the radiation beam in a given direction. These interactions are separated
into two types: continuum and line processes. This allows us to separate the contributions
of the continuum and lines to the emission and absorption coefficients as ηλ = ηC

λ + η
L
λ

and χλ = χC
λ + χ

L
λ , respectively. If we are modelling many spectral lines simultaneously,

the line contribution assumes a summation over all lines that overlap for a given λ. The
same also holds for all processes that contribute to the emission and absorption in the
continuum.

The interactions between particles and the radiation field produce a change in the
energy state of an electron. The electron being subjected to the interaction can be found

4In practice the bottom boundary is located around τ = 10−50. Already at this depth, the radiation field
is strongly coupled with the plasma and can be safely assumed to follow the Planck function.
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1 Theoretical background

in a bound state in an atom or as a free particle. The interactions that contribute to the
continuum involve a change of an electron from a bound to a free state (and opposite) or
the change between two free states. Therefore, these interactions are known as bound-
free and free-free processes. Spectral lines form in an electron transition between two
bound states in an atom (bound-bound processes). Thus, the continuum level is set by the
bound-free and free-free processes because the energy of a free electron is unbounded.
On the other hand, spectral lines are always due to bound-bound processes.

The bound-free, free-free and bound-bound processes responsible for forming a con-
tinuum and spectral lines can be of two kinds: the radiative processes caused by the
radiation field and the collisional processes caused by the collisions between particles in
a stellar atmosphere. In quantum mechanics, the electromagnetic wave (radiation) has a
dual nature where it can be treated as a wave and as a particle (photon). In the upcom-
ing description of radiative processes, we will treat the radiation field as an ensemble of
photons with some distribution over energies.

Photon absorption is a radiative process in which a photon’s energy is converted into
an electron’s energy (bound or free). In the case of a bound electron, if the energy of the
absorbed photon is higher than the binding energy of the electron, the excess energy is
converted into the kinetic energy of the free electron and an atom is ionised. Recombina-
tion occurs when an ion captures a free electron. This process causes the emission of a
photon with an energy equal to the difference between the total energy of the free electron
and the energy of the electron’s bound state (photon-recombination process). The photon
is also emitted when the bound electron de-excites from a higher energy state (radiative
de-excitation process). The photon absorption and emission processes are responsible for
the coupling and energy exchange between the radiation field and particles.

The primary sources of continuum absorption in the solar atmosphere from the ultra-
violet to the infrared are bound-free and free-free processes of neutral hydrogen atoms
and H− ions. The H− ion is a neutral hydrogen atom that captures a free electron removed
from metals (i.e., elements heavier than helium) in bound-free processes. These H− ions
form mostly in stars that are hot enough to ionize metals but cool enough that electrons
can be captured by the neutral hydrogen atoms (i.e., G and F dwarf stars; Gray 2008). The
contribution of the bound-free processes of various metals to the continuum absorption
coefficient must be considered at the ultraviolet wavelengths.

Since the continuum forms deep in the atmosphere where collisions are frequent, we
can safely assume that the source function in the continuum is Planck’s distribution in the
visible and infrared regions. Knowing the absorption coefficients for each process allows
us to calculate the respective emission coefficients.

1.2.2.1 Formation of spectral lines

Let us consider a group of atoms in an ionisation state k with many discrete energy levels.
A bound electron can be in a lower, l, or upper, u, state due to radiative interactions
or inelastic collisions of an atom with other particles (Fig. 1.6). A bounded electron is
excited from l to u by absorption of a photon (radiative excitation; Fig. 1.6 A) or in an
atom’s collision with a particle (collisional excitation; Fig. 1.6 D). Excited electron decay
into the lower state l in radiative de-excitation by the spontaneous emission of a photon
(Fig. 1.6 B) or in a collisional de-excitation process (Fig. 1.6 E). Another radiative process
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Figure 1.6. Radiative and collisional bound-bound transitions: radiative excitation
(panel A), radiative de-excitation (panel B), stimulated emission (panel C), collisional
excitation (panel D) and collisional de-excitation (panel E). The colliding particle’s
kinetic energy K changes by ∆K corresponding to hν = Eu − El, where h is the Plank
constant. Wavy vertical lines indicate radiative transitions, while solid vertical lines
represent collisional transitions.

that can de-excite an electron is stimulated emission: an excited electron is stimulated to
decay into a lower level by a photon with an energy that matches the energy difference
between the lower and the upper level (Fig. 1.6 C). This photon acts as a mediator that
stimulates an atom to de-excite an electron to a lower state, thus emitting a new photon.
The emitted photon has the same properties as the incident one, which stimulated the
emission. In radiative transfer theory, the stimulated emission is usually treated as a
negative absorption.

In the interaction of photons with atoms, we discern two mechanisms:

Thermal5 absorption: a radiative excitation followed by collisional de-excitation.
In this series of processes, a photon’s energy is first converted into the internal
energy of an atom (electron excitation), which is further converted into the kinetic
energy of a colliding particle during collisional de-excitation.

Thermal emission: an electron is excited during a collision with another parti-
cle (collisional excitation), increasing atoms internal energy. The excited electron
spontaneously decays to a lower state (radiative emission), converting this excess
energy into a photon and thus increasing the energy of a radiation field. Similarly,
the de-excitation of the electron can occur also in the stimulated emission process.

These mechanisms transfer energy from a radiation field to particles in the surrounding
medium (thermal absorption) and vice versa (thermal emission).

5In some literature it is named as true or pure absorption and emission.
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The photons can be removed from a radiation beam in a given direction l by photon
absorption or by photon scattering. During the photon scattering process, a photon ab-
sorption at a wavelength λ from a direction l is followed by a photon emission in direction
l′ with a wavelength λ′. The scattering effectively decreases photon density in the direc-
tion l, but at the same time, it increases it in the direction l′. Since collisional processes
are not involved, there is no energy exchange between particles and the radiation field in
the scattering process.

The absorption coefficient in a spectral line χL, is proportional to the energy of the
absorbed photon, hνl,u, the number density of the atom in an ionisation state k whose
electron is in a lower energy level l, nl,k, and the probability of the photon’s absorption
Bl,u (the Einstein coefficient for the photon absorption):

χL =
hνl,u

4π
·
(
nl,kBl,u − nu,kBu,l

)
. (1.9)

The contribution of stimulated emission is added as a negative factor where nu,k is the
number density of the atom in the same ionisation state k whose electron is in the upper
energy level u, and Bu,l is the Einstein coefficient for the stimulated emission. We treat
the stimulated emission and absorption processes simultaneously because both affect the
incoming intensity in the same way. The negative sign in front of the stimulated emission
factor appears because it reduces the number of atoms available for the photon absorption
process.

The line emission coefficient is:

ηL =
hνl,u

4π
· nu,k · Au,l, (1.10)

where Au,l is the probability for the spontaneous emission (the Einstein coefficient for
spontaneous emission).

The Einstein coefficients are intrinsic characteristics of each transition that can occur
between two energy levels in an atom and are mutually dependent. The relations between
the Einstein coefficients can be derived under the assumption of a detailed balance: the en-
ergy absorbed by the parcel of plasma, Eabs, equals the energy emitted by the same parcel,
Eem. Additionally, we assume that the collisions between particles are frequent enough to
establish the thermodynamic equilibrium in which the radiation field is described by the
Planck function:

Bν(T ) =
2hν3

c2 ·
1

e
hν
kT − 1

. (1.11)

The absorbed energy by a parcel of plasma is χL · Bν(T ), while the emitted energy is ηL.
From the detailed balance between the absorption and emission, we have:

hνu,l

4π
·
(
nl,kBl,u − nu,kBu,l

)
· Bν(T ) =

hνu,l

4π
· nu,kAu,l,

Bν(T ) =
nu,kAu,l

nl,kBl,u − nu,kBu,l
,

Bν(T ) =
Au,l/Bu,l
nl,k Bl,u

nu,k Bu,l
− 1

. (1.12)
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The Boltzmann distribution gives the ratio of level populations in the thermodynamic

equilibrium (see the following subsection for more details) as nl,k/nu,k = gl/gu · e
−

El−Eu
kBT ,

where gl and gu represent the statistical weights of energy levels l and u that define the
maximum occupancy of an energy level. Rewriting the difference of energy levels as
hνl,u = Eu − El, we have from Eq. (1.12):

Bν(T ) =
Au,l/Bu,l

Bl,u

Bu,l

gl
gu

e
hνl,u
kBT − 1

. (1.13)

Connecting the terms from Eq. (1.13) with the Planck function in Eq. (1.11), we obtain
the following relations between the Einstein coefficients:

Bu,l =
c2

2hν3
l,u

Au,l,

Bl,ugl = Bu,lgu.

(1.14)

The same relations also hold when an atmosphere is outside the thermodynamic equilib-
rium. The relations between the Einstein coefficients are correctly derived using quantum
mechanics without any prior assumptions about the medium. Thus, when knowing one of
the Einstein coefficients (usually Au,l), the rest can be calculated from Eq. (1.14). Au,l is
estimated in experimental measurements, from theoretical computations or from observed
spectral lines (more on estimating the Au,l is given in Sec. 1.3.1).

1.2.2.2 Level populations

Assuming that the Einstein coefficients are known, the only missing ingredient for com-
puting the absorption and emission coefficients is the number density of atoms in states
corresponding to the energy levels (level populations) between which transitions occur.
The frequent collisions between particles in dense environments, such as the stellar in-
terior and the photospheric layers, are responsible for establishing the equilibrium dis-
tributions of particle velocities (Maxwell’s distribution) and the excitation and ionisation
distributions of particles (Boltzmann and Saha distributions). In these dense layers where
collisions are frequent, the photon mean free path is small compared to the typical scale of
temperature change. Photons carry information only between particles sensing the same
plasma conditions, allowing us to assume the thermal equilibrium locally in the atmo-
sphere. This approximation is known as local thermodynamic equilibrium (LTE). In LTE,
particles can be considered to be in equilibrium only locally, and because of Kirchhoff’s
law, the source function in LTE is the Planck function. Meanwhile, the radiation field is
not in equilibrium and is determined by solving the radiative transfer equation, which is
significantly simplified in the LTE approximation. However, the absorption coefficient is
still needed to compute the optical depth at each wavelength.

Considering an ensemble of particles with distinct internal energy levels El, the num-
ber density of atoms in ionisation state k whose outermost electron is excited to a given
level l is described by the Boltzmann distribution:

nl,k = nk
gl

Uk(T )
e−

El
kBT , (1.15)
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where nk is the total number density of an atom in an ionisation state k, Uk(T ) is known as
the partition function6 of an atom in ionisation state k, T is the temperature of the medium
and kB is the Boltzmann constant.

Eq. (1.15) shows that the number density of a level population drops exponentially
with increasing level’s energy. This suggests that the stimulated emission factor (in some
literature also referred to as the Boltzmann factor), e−(Eu−El)/λkBT , in Eq. (1.9) has an in-
significant impact on the opacity in spectral lines in ultraviolet and visible wavelengths.
However, the contribution from stimulated emission must be considered for infrared spec-
tral lines. This conclusion follows from the atomic energy structure: very few low-lying
and many high excitation energy levels between which infrared lines form.

The ratio of the atom’s total number density in two consecutive ionisation stages k+ 1
and k is described by the Saha distribution:

nk+1

nk
=

2
ne
·

Uk+1(T )
Uk(T )

·
(πmekBT )3/2

h3 · e−
Eion
kBT , (1.16)

where ne is the number density of free electrons in the medium, me is the electron mass
and Eion is the ionisation energy from state k to k + 1.

Using the Boltzmann and Saha distributions, assuming that the chemical composition,
temperature and density of an atmosphere are known, we can calculate the number density
of levels in every atom in any ionisation state at each depth in an atmosphere. These
number densities are then used to compute the line absorption and emission coefficients
from Eq. (1.9) and Eq. (1.10), respectively, and allow us to solve the radiative transfer
equation.

Collisions between particles are less frequent in less dense layers, and radiative pro-
cesses start to play a significant role in populating and de-populating atomic levels. As
the density in the solar atmosphere decreases with height, the LTE approximation breaks
down, and this case is known as non-LTE. The number density of levels in non-LTE is
calculated from the statistical equilibrium equation, which is solved iteratively with the ra-
diative transfer equation. The statistical equilibrium equation assumes a net-zero change
of the number density of a level population in time and an equilibrium between collisional
and radiative processes that populate and depopulate an atomic level. Proper modelling
of a spectral line in non-LTE requires a solution of the statistical equilibrium equation for
all atomic levels in an atomic model.

1.2.2.3 Broadening of spectral lines

The previous description of line formation assumed that the spectral line is formed only
at a specific wavelength λ corresponding to the difference in energy levels, which implies
that the line profiles have the shape of a δ function. However, observed spectra exhibit
spectral lines that are not sharp but have some width. This so-called broadening of spec-
tral lines is caused by the uncertainties in the energy of atomic levels (natural broadening),

6The partition function is given as Uk(T ) =
∑

l gl · e−El/kBT , where the summation goes over all energy
levels in an atom. It represents the total number of states a system can be found at a given temperature T .
In general, it is complicated to calculate the partition function for atoms with a high atomic number. Many
different approximations are imposed, and interpolation tables are created to compute the partition function
for a desired temperature. The most recently compiled table of the partition functions for temperatures up
to 10 000 K is given by Barklem & Collet (2016).
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thermal motion of atoms (thermal broadening), particle collisions (pressure or collisional
broadening), spatially unresolved plasma motions (micro- and macro-turbulent broaden-
ing) and the magnetic field (Zeeman broadening; more on this in Sec. 1.2.3.1). Additional
broadening mechanisms of spectral lines, which are not discussed further, include isotopic
and hyper-fine structure splitting.

Broadening of spectral lines also occurs due to macroscopic plasma flows, such as
the one caused by convective plasma motion or by stellar rotation. These broadening
mechanisms must be considered when we analyse the spatially averaged solar spectrum
or stellar spectra, which are spatially integrated over the whole stellar surface.

Natural broadening. The atomic energy levels are not infinitely sharp but have some
width (uncertainty), δE, that is determined by Heisenberg’s uncertainty principle, which
relates the uncertainty of an energy level δE to the lifetime of the level ∆t. The ground
state levels are characterised by an infinite lifetime, thus having an infinitely sharp energy
level. The lifetime of an excited energy level u is the reciprocal sum of the Einstein
coefficients for the spontaneous emission, Au,l, from all possible transitions from the level
u to levels l < u:

∆tu =
1∑

l<u Aul
. (1.17)

The lifetime of excited energy levels is typically in the order of nanoseconds. An excep-
tion are the metastable levels whose lifetime can be measured even in seconds (very small
probability for spontaneous de-excitation).

The natural broadening of levels allows the atom to absorb and emit photons whose
energy does not correspond exactly to the energy difference between the upper and lower
levels. Those transitions that occur farther from the nominal energy of the levels are much
less probable (Fig. 1.7). Superimposing all these transitions broadens a line whose profile
becomes a Lorentzian function. The width of this profile is determined by the width of
the energy levels between which transition occurs (lifetime of levels, or Au,l; see Fig. 1.7).
On average, spectral lines have a natural width of a few picometers and require a very
high-resolution spectrograph to be measured, which is only achievable for lines observed
in laboratories.

Thermal broadening. The motion of particles in an atmosphere alters the photon’s
wavelength (Doppler effect), allowing atoms to absorb photons whose original energy did
not correspond to the energy of a transition. Consequently, atoms absorb/emit photons in
a broader range of energies, broadening a spectral line. The resultant line profile takes
the shape of a Gaussian function, which follows from projecting the Maxwell distribution
of particle velocity onto the line of sight. Since the temperature defines the velocity of
particles, this broadening is known as thermal broadening, characterised by the thermal
width of a spectral line given by:

∆λD =
λ0

c

√
2kBT

m
,

where λ0 is the central wavelength of a line, m is the mass of an atom of the considered
species, and c is the speed of light. Thermal broadening is typically an order of magnitude
larger than natural broadening, which is why it is considered a major source of broadening
in spectral lines.
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Figure 1.7. The natural broadening of energy levels due to Heisenberg’s uncertainty
principle. The energy of an atomic level follows a Lorentzian function. The level
l has a larger lifetime, characterised by small δEl, while the level u has a smaller
lifetime and, therefore, larger δEu.

Impact of the line of sight velocity. Similar to thermal broadening, plasma motion
along the line of sight also alters the photon’s energy, making it possible for atoms to
absorb/emit photons whose energies did not match the energy of the transition. Contrary
to thermal broadening, which only increases the line width, the line of sight velocity of
plasma produces a wavelength shift of the line. When the line of sight velocity changes
with height, the differential shift of the line at each depth in the atmosphere broadens the
line and produces an asymmetric line profile. The asymmetries in the line profile can be
very subtle (depending on the magnitude of the velocity) and are only apparent through
the construction of line bisectors.

Micro-turbulent broadening. Further broadening of spectral lines in the solar at-
mosphere comes from turbulent motions of plasma that occur on scales smaller than the
mean free path of a photon (∼100 km). These motions are parameterized with the micro-
turbulent velocity vmic, and the broadening of spectral lines caused by it is known as
micro-turbulent broadening. Averaging this motion of particles and projecting it along
the line of sight contributes to the aforementioned thermal velocity of particles. There-
fore, we include the vmic as an additional term in the thermal Doppler width as:

∆λD =
λ0

c

√
2kBT

m
+ v2

mic.

Micro-turbulent velocity is considered an atmospheric parameter, but it is introduced
ad hoc to describe unresolved plasma motion along the line of sight. It reproduces the
observed line width, which would otherwise be poorly represented when only the thermal
and the line of sight velocity contributions are accounted for.
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Macro-turbulent and instrumental broadening. Turbulent plasma motions on scales
larger than the photon mean free path (but still smaller than the spatial scales resolved in
observations) are parameterized with the macro-turbulent velocity vmac. The broadening
of a line caused by vmac is known as the macro-turbulent broadening of spectral lines.
The spectrum is convolved with a Gaussian function with width σ = vmac/c. The macro-
turbulent broadening preserves the equivalent width7 of the line, thus increasing the line
core intensity, the line becomes shallower and has broader wings.

The observed spectral lines undergo additional broadening caused by the spectrograph
itself. This type of broadening is known as instrumental broadening, and it is characterised
by the instrumental profile, which can be measured by recording the infinitesimally small
light source. The recorded spectrum of an object is the convolution of the actual spectrum
and the instrumental profile. Usually, the instrumental profile takes the shape of a Gaus-
sian function of width σ = 1/R, where R is the spectrograph resolution. Even though
instrumental broadening differs in nature from macro-turbulent broadening, their effect
on the spectrum is the same, and in spectral modelling, they cannot be distinguished.

Collisional broadening. The energy levels in an atom are perturbed by Coulomb in-
teraction with colliding particles, causing a shift of their energy levels E and their widths
δE. This change in energy levels permits transitions that would otherwise not be possible.
The broadening of a line caused by elastic collisions with other particles is described with
Lorentzian. The main perturbers which cause collisional broadening are free electrons
(Stark broadening) and hydrogen atoms (van der Waals broadening). Broadening caused
by the hydrogen atoms is more important in the solar atmosphere owing to the large
abundance of neutral hydrogen atoms. The contribution of hydrogen collisional broad-
ening on the width of the spectral line is still often represented using the approach from
Unsold (1955). This approach was later improved for lines of neutral elements by the
theory developed in Anstee & O’Mara (1995), Barklem & O’Mara (1997), Barklem et al.
(1998) (so-called ABO theory). This theory describes the hydrogen collisional broaden-
ing for s-p, p-d and d-f transitions. The ABO theory was later extended to spectral lines
of ionised elements, which requires treatment on a line-to-line basis (Barklem & O’Mara
1998, 2000, Barklem & Aspelund-Johansson 2005).

The final profile ϕ(λ) of a spectral line accounts for all broadening mechanisms. The
combined profile is a convolution of the Lorentzian and Gaussian functions known as the
Voigt function. The Gaussian function dominates the core of the line profile, while the
line has broad wings due to the Lorentzian part. The absorption and emission coefficients
in Eq. (1.9) and Eq. (1.10) are thus multiplied by the Voigt function, ϕ(λ), which yields:

χL
λ =

hνlu

4π
· (nlkBlu − nukBul) · ϕ(λ),

ηL
λ =

hνlu

4π
· nuk · Aul · ϕ(λ).

(1.18)

In the previous equations, we added index λ to the coefficients to note their wavelength-
dependence coming from the line profile ϕ(λ).

7The equivalent width, W, of the line is a measure of the line strength. It represents the line area between
the continuum and the line profile, which is identical to a rectangle of width W and unit height.
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Spectral line forms over a broad range of heights in an atmosphere because of the
variations in the absorption coefficient with wavelength. This variation causes photons
at different wavelengths in a line to decouple from an atmosphere at different heights,
making spectral lines very useful as a diagnostic tool for inferring an atmosphere’s ther-
modynamic and magnetic properties. The line’s core has the largest opacity (highest
probability of absorption) and is formed at a much higher layer in an atmosphere than the
line wings. The height at which the photons at different wavelengths in a line decouple
from an atmosphere is changed by altering the line absorption coefficient. We achieve
this by altering either the level populations (excitation potential of a level, abundance,
ionisation fraction) or the transition probability (Au,l). Thus, the atmosphere at a central
wavelength of some lines will be transparent enough, allowing photons to escape from
the photospheric layers (photospheric/LTE lines). At the same time, it is very opaque for
some, and photons escape from the chromospheric layers (chromospheric/non-LTE lines).

In Eq. (1.18), we assumed that the photon absorption, emission and stimulated emis-
sion processes have the same profile ϕ(λ). This assumption is valid for many spectral
lines we observe in the solar spectrum. It is a consequence of the absorption and emission
processes being completely independent, which happens when collisional processes dom-
inate over scattering processes. This assumption is known as complete frequency redistri-
bution, and it fails only for very strong lines, such as Mg II h&k, Ca II H&K, Lyα, formed
in the chromosphere. Properly modelling these lines requires the partial frequency redis-
tribution approach, in which the absorption and emission profiles are different (Hubeny &
Mihalas 2014).

1.2.3 Radiative transfer of polarised light
Magnetic field permeating a stellar atmosphere establishes an anisotropy that produces a
polarisation of radiation and affects its propagation differently in each direction. Analyses
of the observed spectrum of the Sun require treatment of not only the intensity but also of
the radiation’s polarisation properties.

The oscillations of the electric field components define the polarisation state of an
electromagnetic wave. Let us assume that a harmonic monochromatic plane wave prop-
agates in the z direction and that the electric field oscillates in a plane perpendicular to
it (xy plane). The electric field vector components decomposed onto the x and y axis,
oscillate with the same frequency but are not necessarily in phase. A wave whose electric
field components oscillate with a unique phase difference δ is said to be a polarised wave.
A single harmonic monochromatic plane-parallel electromagnetic wave will always be
completely polarised (has a constant δ).

A wave’s most general polarisation state is an elliptically polarised wave, which oc-
curs for δ , nπ, assuming that neither of the electric field components is zero and that
they are not equal (Fig. 1.8). A special case of elliptical polarisation is a linearly polarised
wave that takes place for δ = nπ or when one of the electric field components vanishes.
Another special case is a circularly polarised wave, which takes place for δ = nπ/2 when
both electric field components have the same amplitude. Based on a phase difference δ,
we discriminate between right (δ = π/2) and left (δ = 3π/2) handed circularly polarised
waves. Fig. 1.8 summarizes different states of a wave’s polarisation based on the phase
difference δ and the amplitudes of the electric field components.
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Figure 1.8. Different polarisation states of a plane-parallel monochromatic electro-
magnetic wave. Each panel depicts the motion of the electric field vector in a plane
perpendicular to the direction of wave propagation when viewed from the observer’s
standpoint. δ is the phase difference between Ex and Ey components with respective
amplitudes E0,x and E0,y.

However, photometric detectors are sensitive to all electromagnetic waves that fall on
them in some finite time interval, i.e., we are not detecting individual electromagnetic
waves, but only wave packets. Each wave in this wave packet has an arbitrary phase
difference δ, and the phase difference of each wave determines the polarisation state of a
wave packet. Thus, the wave packet can have any degree of polarisation from completely
polarised (all waves having the same δ) to the non-polarised state (each wave has an
arbitrary δ). The measured wave packets have some degree of polarisation because they
deviate from an ideal plane-parallel wave due to wave diffraction on the telescope entrance
and reflections from optical elements inside the instrument.

There are multiple mathematical formalisms in which the polarisation can be de-
scribed (e.g. Stenflo 1994, Born & Wolf 1999). The most used one in solar physics is
the Stokes formalism, where the complete state of the radiation is described using the so-
called Stokes vector Iλ = (Iλ,Qλ,Uλ,Vλ)T. Here, Qλ and Uλ are a measure of nett linear
polarisation, and Vλ is a measure of nett circular polarisation. Qλ and Uλ differ from each
other by a rotation of the plane of linear polarisation by 45◦. The amount of polarisation is
quantified by the degree of polarisation p that is equal to the ratio of the total polarisation
and the total intensity:

p =

√
Q2
λ + U2

λ + V2
λ

Iλ
. (1.19)

The radiation is completely polarised for p = 1 while non-polarised for p = 0. Observed
radiation is generally partially polarised, having 0 < p < 1.

The radiative transfer equation for time-independent polarised radiation is:

dIλ
dτc
= Kλ(Iλ − Sλ), (1.20)

where Sλ is the source function, dτc = −χ
Cds is the continuum optical depth given by the

continuum absorption coefficient χC at 5000 Å andKλ is the propagation matrix that con-
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tains all the absorption and dispersion (phase modulation) properties of the interactions
between radiation and particles.

The propagation matrix contains properties of both the continuum and spectral lines:
Kλ = 1 + η0K

L
λ , with 1 standing for the 4×4 identity matrix and η0 = χL/χC being the

ratio of line and continuum absorption coefficients. The line propagation matrix can be
further split into three terms:

KL
λ =


ηI 0 0 0
0 ηI 0 0
0 0 ηI 0
0 0 0 ηI

 +


0 ηQ ηU ηV

ηQ 0 0 0
ηU 0 0 0
ηV 0 0 0

 +

0 0 0 0
0 0 ρV −ρU

0 −ρV 0 ρQ

0 ρU −ρQ 0

 . (1.21)

Each matrix element contains the line absorption profile (the Voigt function) and the line
dispersion profile (Faraday-Voigt function). The Faraday-Voigt function is, similarly to
the Voigt function, a convolution of a natural line dispersion profile and the Gaussian func-
tion, and it has an anti-symmetrical shape. Here, we simplified the notation by removing
any wavelength dependence in these matrix elements.

The first matrix in Eq. (1.21) corresponds to the absorption of each Stokes component
by the same amount. The second matrix represents the dichroism effects where each
polarisation component is attenuated differently, and it effectively couples the specific
intensity I with the polarisation states Q, U and V . The third matrix represents dispersion
effects, also known as the magneto-optical effects, which do not alter the polarisation
degree but are responsible for the modulation of the polarisation states.

The magnetic field permeating an atmosphere establishes a preferred, mutually per-
pendicular directions in which a radiation field is more or less strongly absorbed. One
direction corresponds to the direction of the magnetic field vector, while the other two
are in the plane perpendicular to it. These directions are reprojected onto the coordinate
system established by the direction of radiation propagation and the plane perpendicular
to it. The reprojection angles of a magnetic field vector are inclination θ and azimuth ϕ
that are contained in the propagation matrix elements ηI,Q,U,V and ρQ,U,V (equations for
these terms can be found in, e.g., del Toro Iniesta 2003).

1.2.3.1 Zeeman effect

The splitting of spectral lines in the presence of an external magnetic field was first ob-
served by the Dutch physicist Pieter Zeeman, who received the Nobel prize for this dis-
covery (shared with Hendrik Antoon Lorentz) and after whom this effect was named. In
the simplest case, a spectral line is split into three components: one unshifted (π) com-
ponent linearly polarised and two symmetrically shifted (σb and σr) components with
respect to the central wavelength of the unsplit line that are elliptically polarised with the
phase difference of 180◦ (Fig. 1.9). Laboratory measurements of the Zeeman effect have
shown that most spectral lines are split into more than just three components, as each of π
and σb,r can also be split into multiple sub-components. The theoretical description of the
Zeeman effect is given by quantum mechanics. A quantum description of an atom will be
reviewed following the theory presented in Degl’Innocenti (2014).

The line splitting results from the interaction between an external magnetic field with
the orbital angular momentum, L and the spin angular momentum, S, of a bound electron.
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1.2 Radiative transfer theory

These interactions cause the splitting of atomic energy levels, thus splitting a spectral line.
The state of an electron in an atom is defined by the Dirac equation (relativistic form of
the Schrödinger equation) of form:

Ĥ|ψ⟩ = E|ψ⟩. (1.22)

In the equation above, Ĥ is the Hamiltonian of the system, and |ψ⟩ is the wave function
of the electron corresponding to a level with energy E. The Ĥ contains all possible inter-
actions exerted on an electron. In the simplest case, we account only for the electrostatic
interactions with the atomic nucleus, Ĥ0, and the interaction of orbital and spin momenta
of an electron (ĤLS , spin-orbit interaction). This case is known as the Russel-Saunders
coupling, or the LS coupling, in which ĤLS is treated as a small perturbation to Ĥ0.

The solution of Dirac’s equation in the LS coupling scheme is described with quantum
numbers L and S corresponding to the L and S, respectively. The quantum numbers
represent an electron’s constants of motion in a vector space in which Ĥ is represented by
a diagonal matrix. Each atomic level in an atom is defined by a unique set of quantum
numbers L and S , represented uniquely with a term symbol 2S+1L. The superscript is
known as the level multiplicity and L is symbolised by letters S, P, D, F for L = 0, 1, 2, 38.
For example, an electron in a ground state of a neutral iron with a term symbol 5D has the
corresponding quantum numbers, S = 2 and L = 2.

The interaction of an external magnetic field with a bound electron having the atomic
orbital angular momentum L and the spin angular momentum S, adds another interaction
term to H in the form:

HM = µ0(J + S) · B,

where B is the magnetic field vector and J = L + S is the total angular momentum
of an electron. This magnetic interaction term is treated as a perturbation to H0 + HLS

where the inequality HM << HLS << H0 simplifies the solution of Dirac’s equation. The
diagonalization of HM introduces a new quantum number J (the eigenvalue of HM) that
corresponds to J. An electron state is now fully described by quantum numbers L, S and
J combined in the term symbol 2S+1LJ.

The energy of atomic levels, ELS , obtained in the LS coupling scheme, are degenerate
when there is no magnetic field. This degeneracy of an atomic level has already been
introduced in Sec 1.2.2.1 where we called it the statistical weight of a level, which is
equal to 2J + 1. Atomic levels are split into 2J + 1 sublevels when B , 0 (Fig. 1.9), each
with an energy differing from ELS by an amount:

∆EM = µ0BMgJ,

where µ0 is Bohr’s magneton. gJ is the Landé factor of a level defined by the quantum
numbers J, L and S , which can be explicitly computed only in the LS coupling scheme
as:

gJ =
3
2
+

S (S + 1) − L(L + 1)
2J(J + 1)

.

The quantum number M is the magnetic quantum number of Jz, which is a projection
of J onto the direction of the magnetic field (assumed to be along the z-axis). It can take

8The complete list of letters identifying a term with L > 3 can be found in, e.g., Degl’Innocenti (2014).
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Figure 1.9. Splitting of the atomic levels involved in a transition due to the magnetic
field. Spectral line for B = 0 is split into three components for B , 0 each obeying
the selection rule ∆M = 0,±1 (π and σb,r components). In the presented example,
each Zeeman component comprises the three spectral subcomponents.

values −J,−J + 1, ..., J − 1, J. For a level with J = 0, we have only one sublevel with
M = 0 and thus no level splitting (corresponds to term symbol 1S0).

The selection rules define transitions that are possible between two split terms. For the
Zeeman splitting, only transitions with ∆M = Mu−Ml = 0,±1 are possible, where Mu and
Ml correspond to the magnetic quantum numbers of upper and lower levels of a transition,
respectively. Above these rules, we have selection rules for dipolar electric transitions
which impose restrictions on the changes of quantum numbers in the LS coupling scheme
that are: ∆L = ±1, ∆S = 0 and ∆J = 0,±1 (0 ↮ 0). Most of the lines observed in
solar and stellar spectra follow these rules, which come from the multipole expansion of
the interaction Hamiltonian and keeping only the dipolar term of the electric field vector
(more on this in Sec. 1.3.1.2).

The three transitions with ∆M = 0,±1 correspond to the previously introduced line
components: π for ∆M = 0 and σb,r for ∆M = ±1, respectively. The wavelength shift of
each line component in Angstrom is:

∆λB = 4.67 × 10−10λ2
0B(glMl − guMu),

when B is given in Gauss and λ0 in Angstrom.
As expected, multiple line components appear from level splitting (Fig. 1.9). How-

ever, in observations, we have effectively three components corresponding to the selection
rules imposed on M. The final line and dispersion profiles included in the propagation ma-
trix elements are weighted sums of line and dispersion profiles for each component of an
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unsplit line. The weighting coefficients are determined from the quantum numbers of
levels between which each line component is formed. This is a valid assumption if each
sublevel is equally populated (the collisions between particles dominate over the photon
scattering).

When a spectral line is observed from a viewing direction parallel to the magnetic
field lines, only σb,r components exist and are circularly polarised. When observed in a
direction perpendicular to the magnetic field vector, all three components are observed
and are linearly polarised. The π component is polarised parallel to the magnetic field,
whereas σb,r components are polarised perpendicularly to the magnetic field.

1.3 The atomic line parameters
In the previous section, we described the formation of spectra through interactions be-
tween radiation and atmospheric particles. Assuming that atmospheric parameters are
known (temperature, density, velocity and magnetic field), we can compute the polarised
absorption and emission coefficients in the atmosphere at each depth, compute the source
function and optical depth, and thus solve the radiative transfer equation to obtain a spec-
trum. However, the computation of the absorption and emission coefficients (specifically,
level populations) relies on the known atomic parameters of levels between which a spec-
tral line we are modelling is formed. Throughout the thesis, we will always consider that
the line is formed in the LTE approximation where the Boltzmann and Saha distributions
give level populations.

The atomic parameters that are relevant for the line formation in LTE are the electronic
configuration of atomic levels (quantum numbers), the energy of the lower level of the
transition, the central wavelength of the line, transition probability Au,l, Landé g-factors,
collisional broadening (i.e., coefficients of the ABO theory) and abundance. The abun-
dance of a chemical element is actually a characteristic of an atmosphere (its chemical
composition). However, throughout the thesis, we will refer to it as an atomic parameter
since it does not depend on the underlying physical conditions in an atmosphere, which
is true for any other atomic parameter listed above. All these atomic parameters alter the
absorption in the spectral line changing the layers in the atmosphere to which the spectral
line is sensitive, and so its diagnostic potential for inferring the atmospheric parameters
(for more on the line sensitivity to atmospheric parameters and the inference methods,
see Sec. 2.2). The inference of atmospheric parameters from observed spectra using the
wrong or inaccurate values of atomic parameters introduces an error in the inferred atmo-
spheric parameters. We need to have reliable atomic parameters to be able to determine
the physical structure of the solar atmosphere accurately.

Many atomic and molecular line databases contain all the necessary data for modelling
spectral lines. Some of the most comprehensive and widely used ones in solar/stellar
physics are the NIST9 (Kramida et al. 2022), Kurucz10 (Kurucz & Bell 1995) and VALD11

(Piskunov et al. 1995) databases. There are three approaches for determining atomic pa-
rameters: experimental measurements of line intensity in laboratory setups, theoretical

9https://www.nist.gov/pml/atomic-spectra-database
10http://kurucz.harvard.edu/
11http://vald.astro.uu.se/
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1 Theoretical background

computations of an atomic structure, and inference from observed solar and stellar spectra.
We will first review how the transition probability parameter, Au,l, is determined in

each of the approaches. This will aid in understanding the limitations of each approach,
developments achieved over the years of research and the diversity of methods that com-
plement each other. After a discussion regarding the Au,l parameter, we will discuss the
determination of the central wavelength of a spectral line. The knowledge of the precise
central wavelength of a line is essential for revising the energy levels of atoms (Borrero
et al. 2003), identifying new energy levels in atoms (Peterson & Kurucz 2022), accu-
rate identification of spectral lines in line-rich spectra, especially of iron-group elements
(Nave et al. 2017), and for the determination of the line of sight velocity stratification in
the solar atmosphere.

1.3.1 The transition probability
An alternative way of expressing the transition probability Au,l is using a dimensionless
parameter called the oscillator strength f . It is introduced as a quantum correction to a
classically derived transition probability. The oscillator strength effectively decreases the
classically derived probability of photon absorption or emission. Usually, the oscillator
strength is a very low number, and only for a few strong lines it reaches unity. This param-
eter is poorly known and calculated for many spectral lines mainly using the theoretical
approach, prone to significant uncertainties (see Sec. 1.3.1.2 for more details). We have
accurate oscillator strengths measured in laboratories only for a small number of lines.

The oscillator strength, f , is related to Au,l by (Degl’Innocenti 2014):

Au,l =
2πe2

0ν
2
l,u

ϵ0mec3 ·
gu

gl
f ,

where e0 is the electron charge, ϵ0 is vacuum electric permittivity, and gl and gu are the
statistical weights of the lower and upper levels, respectively. The oscillator strength is
commonly multiplied by the statistical weight of an energy level to form a g f factor.
Because the g f factor is a very small number, in atomic line databases, it is usually given
as log(g f ).

Accurate log(g f ) values for many spectral lines are of significant importance for mea-
suring the chemical composition of the Sun to which we scale the composition of all other
astronomical objects (e.g., Asplund et al. 2009). Furthermore, the chemical composition
of other stars is essential to understand the evolution of stars and test the current theories
of stellar evolution (Asplund et al. 2009). Thus, we are motivated to contribute to this
effort and provide the wider astronomical community with accurate log(g f ) values that
would allow us to understand the Universe better.

1.3.1.1 Experimental measurements

Atomic physics laboratories are invaluable for providing scientists with atomic parameters
of spectral lines with low uncertainties. Low uncertainties are achieved by precise control
of the physical conditions in spectroscopic furnaces that produce emission or absorption
lines of an element for which we want to measure the log(g f ) parameter (Blackwell &
Collins 1972). The most precise results are achieved by measuring the relative log(g f )
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1.3 The atomic line parameters

values based on the ratios of line strengths either by measuring the line core intensities (in
emission spectra) or the equivalent widths (in absorption spectra; e.g., Wiese 1970, Black-
well & Collins 1972). Based on which kind of spectrum we are using, we differentiate
between the absorption and emission methods, which are expected to provide the same
results. The precise measurement of absolute log(g f ) values is achieved by measuring
the lifetime of an energy level.

The absorption method produces the spectrum by passing light from a continuous
source through a vapour created by heating a plate made from the element of interest.
The plate must be in the purest form to ensure that the observed lines are produced only
by the element for which we are measuring log(g f ) values. As the source of light, for
example, Blackwell & Collins (1972) used a high-pressure xenon gas lamp (Collins et al.
1970).

The strength of the observed line depends on the furnace’s physical conditions, its
length, and the log(g f ) parameter. Very weak lines are observed only in long enough
furnaces so that enough photons are absorbed at the wavelength of the line (Blackwell
& Collins 1972). The proper measurement of the equivalent width assumes a constant
temperature and pressure along the furnace. The relative log(g f ) values are calculated
from the ratio of equivalent widths of two spectral lines, thus removing any temperature
and pressure dependence. This approach is valid only if both lines originate from the
same lower level. Otherwise, the relative log(g f ) will depend on the Boltzmann factor,
e−(El,1−El,2)/kT , which is temperature dependent and contains the difference between the
lower level energies of the two lines, El,1 and El,2.

The measured relative log(g f ) values are set on an absolute scale by the absolute
log(g f ) value of another line, which is determined using some other method (e.g., mea-
surement of the lifetime of a level; see below for more details). The reference line used
for setting the absolute log(g f ) scale of iron lines is the line at 371.994 nm (e.g., Bridges
& Wiese 1970, Klose 1971). Iron lines are important in solar physics because they are
the most numerous, from ultraviolet to infrared wavelengths. A group at Oxford made
a considerable effort to accurately measure experimentally the relative log(g f ) values of
many iron lines originating from low excitation levels in a series of papers that started
with Blackwell et al. (1975). They report the accuracy of the absolute log(g f ) values to
be 0.02, which corresponds to the relative error of around 5%. Later, they included the
measurements of titanium (Blackwell et al. 1982) and nickel lines (Blackwell et al. 1989),
the other two elements with many lines in the solar spectrum. These elements, iron, tita-
nium and nickel, have many of lines in the solar spectrum because they have many energy
levels between which lines are formed and have relatively high abundance in the solar
atmosphere (e.g., Asplund et al. 2009).

The measured line core intensity in the emission method is assumed to be directly
proportional to the transition probability and the number density of emitting atoms. The
spectral lines are produced by directly heating the plate made from the element for which
we are measuring log(g f ) values. Assuming that the plate is uniformly heated, the ratio
of line core intensities of two spectral lines will be proportional to the difference between
respective log(g f ) values. The same Boltzmann factor as in the absorption method would
need to be included for computing the relative log(g f ) values unless these two lines orig-
inate from the same upper level. The problem with the emission method is in the accurate
measurement of the background continuum, contamination of the line core intensity by
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the wings of nearby lines, and the reduction of the line core intensity by self-absorption
in the evaporated gas from the heated plate (Wiese 1970). The advantage of the emission
method is that it can reach higher excitation levels, which are otherwise not accessible to
the absorption method (Blackwell et al. 1975).

The absorption and emission methods can be used to measure the absolute log(g f )
values. However, the uncertainties of the absolute log(g f ) values are much larger than
for the relative log(g f ), determined either using the absorption or emission method. The
reason behind this is the difficulty of maintaining a constant temperature and pressure
along the furnace. Any slight deviation in temperature along the furnace will cause in-
homogeneity in the number density of atoms and thus propagate into the uncertainty of
determined log(g f ) value. The number densities are computed under the LTE approxi-
mation using the Boltzmann-Saha distribution, which is a reasonable assumption. Any
deviations from LTE will contribute to the error in the result both for the absolute and the
relative log(g f ) value. The accuracy of determined log(g f ) values can be examined by
analysing the spread in the inferred abundance of an element from each line in the solar
spectrum (Blackwell & Collins 1972, Blackwell et al. 1976). For this purpose, a proper
atmospheric model is used to compute a spectrum which is compared with the observed
one.

The lifetime method used to measure the absolute log(g f ) values does not depend
at all on the physical conditions inside the furnace. It is an ideal method for providing
the absolute log(g f ) values with low uncertainty. The method is based on measuring an
excited state’s decay rate by observing the emission line intensity decay. The upper level
is populated in the collisional excitation by a pulsed beam of electrons (Klose 1971) or in
the radiative excitation using a laser (den Hartog et al. 1987). Assuming that the decay
of the excited electron to the lower levels occurs only by the spontaneous de-excitation
(Wiese 1970), the lifetime of the excited level, ∆t, is the time in which e number of atoms
are de-excited and given by Eq. (1.17). The decay of line intensity over time is fitted with
an exponential function plus the constant continuum (describing the background intensity)
to determine the lifetime of a level (Klose 1971).

To determine the transition probability of a specific transition in this decay, we have
to calculate the rate of each transition between the upper and lower levels. This rate is
known as branching fraction, BFu,l, and it is given by:

BFu,l =
Au,l∑

l<u Au,l
, (1.23)

where the branching fractions satisfy
∑

l BFu,l = 1. The branching fractions are estimated
from the ratio of line transition probabilities determined using either the absorption or the
emission method.

Substituting the expression for lifetime from Eq. (1.17) in Eq. (1.23), we obtain the
transition probability of a specific transition as:

Au,l =
BFu,l

∆tu
.

However, computing the absolute log(g f ) of lines by measuring the decay rate of a
level is hindered by different processes that depopulate and populate a given level (Wiese
1970). The excitation of the level is hard to control, and the higher levels could also be
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excited simultaneously. Any spontaneous decay from these higher levels can populate the
level of interest, thus increasing the lifetime of the level (cascade effect). Additionally,
the collisions between particles can induce electron transitions that cannot be disregarded.
This problem is overcome by keeping the low density in the furnace by lowering the
pressure, thus reducing the collisional (de-)excitation. Nevertheless, the improvements
in laser physics achieved over the years allow us to populate only the level for which we
are measuring the lifetime. This allows for the determination of precise absolute log(g f )
values for many different elements using the lifetime measurement method in combination
with branching fractions (see, e.g., Den Hartog et al. 2014).

The experimental measurements of log(g f ) values are not limited to the methods de-
scribed above, which are the most widely used methods whose results are cited in atomic
line databases and are of the highest relevance for solar physics. The review of other meth-
ods and comparisons between them and their limitations are given in Huber & Sandeman
(1986).

1.3.1.2 Theoretical determination

Theoretical computation of atomic structure allows for determining the transition proba-
bility between any two energy states in an atom in its interaction with the radiation field.
The transition probability corresponds to the decay rate of an electron’s energy averaged
over the interaction time, which we already introduced as the Einstein coefficient for
spontaneous emission Au,l, given as:

Au,l =
2π
ℏ
|⟨ψu|ĤI|ψl⟩|

2δ
(
hνl,u − ∆Eu,l

)
, (1.24)

where ĤI is the interaction Hamiltonian between the electron and the radiation field, ℏ is
the reduced Planck’s constant (h/2π), and ψl and ψu are the wave functions for the lower
and the upper level of the transition, respectively. Dirac’s delta function allows only
interactions between the radiation field and an atom in which a photon is emitted
or absorbed whose energy hνl,u corresponds to the energy difference between energy
levels ∆Eu,l = Eu − El.

For a single electron system, the interaction Hamiltonian is proportional to p · AR(r),
where p is the momentum of the electron at the position r that interacts with the radiation
field having a vector potential AR. The computation of the matrix element |⟨ψu|ĤI|ψl⟩|

2 is
generally done by expanding the term in a series. The first expansion term, the electric
dipole term, gives the strongest lines (with the largest transition probability). Most of
the lines observed in the solar and stellar spectra are dipole transitions (allowed lines
indicated as E1 in atomic line databases). Spectral lines originating from higher order
expansion terms (magnetic dipole, electric and magnetic quadrupole) do appear in solar
spectra (e.g., Mg I 4571 Å; Mauas et al. 1988), as well as in other astrophysical objects
such as emission nebulae.

It is apparent from Eq. (1.24) that we need to know the wave functions and energy of
corresponding levels between which transitions occur to compute the transition probabil-
ity. These terms are obtained as a solution to Dirac’s equation Eq. (1.22). The Hamil-
tonian must contain all possible interactions exerted on the electron in the atom. Hence,
the Hamiltonian has the kinetic term due to the electron’s motion around the nucleus, po-
tential energy from electron-nucleus interaction, the potential energy of electron-electron
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interaction (in multielectron atoms) and the spin-orbit interaction (magnetic interaction
between electrons spin and orbital angular momenta). The solution of Dirac’s equation
can be explicitly obtained only for hydrogenic systems (hydrogen atom and hydrogen-like
ions). For any other system with two or more electrons, only approximate solutions can
be obtained (see, e.g., Cowan 1981).

The most regularly used approximate solution to Dirac’s equation is the one given by
Slater-Condon theory, where the wave functions are considered to be a linear combination
of the basis functions (Cowan 1981). These basis functions correspond to the different
electron configurations that are determined by the principal quantum number n and the
angular quantum number l. These configurations are degenerate systems consisting of
many substates that are defined by their own sets of quantum numbers that depend on the
strength of the electron-electron interaction and the spin-orbit interaction terms (electron
coupling). The energy of a configuration is calculated as the centre of gravity of each
substate’s energy.

The basis functions are determined in a numerical solution of Dirac’s equation us-
ing either the perturbative or the variational method (Cowan 1981, Fischer et al. 2016).
These basis functions are then used to construct the wave functions of each substate using
the single-configuration or multi-configuration approximation. In the case of the single-
configuration, the substate wave function is a linear combination of basis functions cor-
responding to the single configuration to which a substate belongs. This approximation
is very useful for low-lying levels with no overlap in energy of different configurations.
However, there is significant overlap for higher energy configurations, and the substate
wave function is a linear combination of basis functions of all configurations that over-
lap in energy (multi-configuration approximation). The energies of substates in multi-
configuration approximation are obtained as perturbations to energies determined in the
single-configuration approximation. If some configuration substates have experimentally
measured energies, these are used to fit theoretically determined ones, improving the ac-
curacy of determined basis wave functions.

The nature of the basis functions depends on the chosen coupling scheme, simplifying
their determination. The suitability of the coupling scheme is dependent on the problem
at hand, and it is related to the strength of the electron-electron and spin-orbit interac-
tions. In the case of strong spin-orbit interaction, we can treat the atom in the JJ coupling
scheme, which is suitable for heavy atoms. In the JJ coupling, the orbital angular mo-
mentum l and the spin angular momentum s of a single electron are coupled to give a
total angular momentum j, which then further interacts with the total angular momentum
of other electrons. In the case of the weak spin-orbit interaction, we use the LS coupling
scheme (Cowan 1981, already introduced in Sec. 1.2.3.1), which proved to be a good
approximation for lower ionisation stages and light atoms and ions (Fischer et al. 2016).

Tremendous efforts have been made to compile the most extensive and comprehensive
list of atomic lines that would be used to compute the absorption in stellar atmospheric
models. Significant contributions are made by Kurucz & Peytremann (1975) (Kurucz
database) as well as by Seaton (1987) (Opacity Project). The relative error of calculated
log(g f ) values can be smaller than 5% (0.02 in absolute value) for lines which are formed
between levels with experimentally measured energies. However, for the theoretically
predicted levels, the uncertainty of calculated log(g f ) values can be greater than 25%
(around 0.1 in absolute value; Pradhan & Saraph 1977).
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Detailed explanations of different numerical approaches used to calculate the wave
functions and corresponding level energies and their limitations are given in Cowan (1981)
and Hibbert (1975). For a more modern review, see Fischer et al. (2016).

1.3.1.3 Inference from observed spectra

Determining the atomic line parameter from observed solar spectra requires a match of the
synthetic spectra computed from an atmospheric model to the observed spectra. The accu-
racy of this approach is limited by the spectral resolution of the observations necessary to
resolve all the spectral lines (line blending), normalisation of the spectrum (exact contin-
uum level), treatment of spectral lines using either LTE or NLTE, treatment of collisional
broadening, the quality of the atmospheric model to represent the physical conditions in
the solar atmosphere realistically, and on the chemical composition of the atmosphere.

The log(g f ) values determined from observed solar spectra are meaningless with-
out specifying the abundance of chemical elements. This comes from the fact that the
abundance, ϵ, and the log(g f ) are coupled in the line absorption coefficient as log χL ∝

ϵ+ log(g f ). Thus, the same absorption coefficient in the line is achieved if we increase the
abundance and decrease the log(g f ) by the same amount (or vice versa). Nevertheless,
if the abundances are updated, we can easily correct the log(g f ) values allowing us to
compare them to those of other research groups that used different abundances.

The determination of the log(g f ) parameter for many spectral lines from the near
ultraviolet to the infrared was first carried out by analysing the spatially-averaged disc-
center quiet-sun spectrum. The log(g f ) values were inferred from the line central inten-
sity (Gurtovenko & Kostik 1981, 1982), whole line profile (Thevenin 1989, 1990) and
the equivalent width of a line (Shchukina & Vasil’eva 2013). These works used some
predetermined 1D solar atmospheric model to compute the synthetic spectrum. These
atmospheric models are constructed to reproduce the continuum and spectral lines with
experimentally measured log(g f ) values from the spatially averaged spectrum. However,
widely used 1D atmospheric models of the quiet Sun, such as HSRA (Gingerich et al.
1971), HOLMUL (Holweger & Müller 1974), VAL-C (Vernazza et al. 1981) and FAL-C
(Fontenla et al. 1993), differ in temperature structure which results in different line profiles
and thus impact the inferred log(g f ) values (see a discussion in, e.g., Thevenin 1989).

Using the line core depth for determining log(g f ) values is limited to lines which
do not show saturation in the line core, are adequately modelled in LTE, and are free of
blends. The requirement for the line core to be unsaturated means that the equivalent
width of the line is directly proportional to the log(g f ). Otherwise, the broadening of the
line caused by collisions and micro-turbulent velocity can severely impact the inference
of the log(g f ) parameter. The line blending is overcome by analysing a whole blend
simultaneously (Borrero et al. 2003) or deblending the spectral line of interest (Shchukina
& Vasil’eva 2013).

Even if we analyse an unblended spectral line, it shows a broader profile than the
computed line from a 1D atmospheric model. The recovery of an observed line width re-
quires broadening the modelled line profile by the ad-hoc added macro-turbulent velocity
parameter, vmac. The macro-turbulent broadening preserves the equivalent width of the
line, thus weakening the line core intensity and broadening the wings. If we use the line
core depth to determine the log(g f ) parameter, the additional macro-turbulent broadening
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will induce coupling between the log(g f ) and vmac. Thus, we must carefully choose the
correct value for vmac, which is a line-independent parameter. This problem does not exist
if we use the equivalent width of the line to determine the log(g f ) parameter.

An improvement over using the 1D atmospheric model is achieved by Borrero et al.
(2003) who used a two-component 1D model (Borrero & Bellot Rubio 2002) constructed
by reproducing the observed infrared spectral lines with experimentally measured log(g f )
values. The two-component model is composed of the granular and the intergranular 1D
atmospheric models with a line of sight plasma flow that reproduces the observed line
asymmetry (a consequence of unequal brightness, area coverage and opposite flow direc-
tions in granules and intergranular lanes in the quiet-sun region). This was a vital aspect
for reproducing the observed line profiles and determining the log(g f ) values in Borrero
et al. (2003). Failure to reproduce the line asymmetry will result in the wrong line width,
affecting the inference of the log(g f ) value. Borrero et al. (2003) estimated the absolute
error of log(g f ) parameter to be around 0.06. On the other hand, Shchukina & Vasil’eva
(2013) reported a relative error in their measurement, dominated by the measurement of
the equivalent width of the line, of around 3% (0.013 in absolute value), but reaching 10%
(0.043 in absolute value) for ultraviolet lines.

The shortcoming of using 1D atmospheric models for reproducing the spatially aver-
aged spectra to determine the log(g f ) values is in the non-linearity of the radiative trans-
fer equation. Uitenbroek & Criscuoli (2011) showed that the spatially averaged spectrum
from a 3D atmosphere is not the same as that from a horizontally averaged 3D atmo-
spheric model. Additionally, the 1D atmospheric models (including the two-component
model) are unable to realistically reproduce the shape of different spectral lines, the spec-
trum from the near ultraviolet to the infrared wavelengths, as well as their center-to-limb
variation simultaneously (Uitenbroek & Criscuoli 2011). All of this points to the problem
of using simple 1D atmospheric models to determine the log(g f ) values from the spatially
averaged spectrum.

Bigot & Thévenin (2006) removed the problem of choosing the correct atmospheric
model by using a 3D radiation-hydrodynamical atmospheric model of the solar atmo-
sphere. They determined the log(g f ) values by matching the observed line profile to the
temporally and spatially averaged line profile from the 3D model. The 3D atmospheric
model can reproduce the observed line asymmetry and removes the necessity for applying
macro-turbulent broadening. Also, the 3D models proved necessary for the solar elemen-
tal abundance determination from the spatially averaged spectrum (Asplund et al. 2021).
Of course, this method requires using 3D atmospheric models with sufficient physics to
reproduce the observed solar spectrum well.

Trelles Arjona et al. (2021) took a different approach and determined the log(g f )
values for 15 infrared lines at 1.56 µm using the spectropolarimetric inversion method (for
more on inversions, see Sec. 2). The authors simultaneously determined the atmospheric
and log(g f ) parameters by matching the synthetic spectra to the spatially resolved spectra
of the quiet-sun region. In this approach, each pixel in the observed field of view is
characterised with a log(g f ) value for each line. A line’s final log(g f ) value is the average
of all values retrieved from pixels with the best match of the synthetic spectrum to the
observed one.

The shortcoming of this method is in the degeneracy of the absorption coefficient
in the line due to the cross-talk between atmospheric parameters and the log(g f ): the
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Figure 1.10. The absorption coefficient for the Fe I spectral line at 4016.419 Å for a
gas pressure of 32 500 dyn/cm2. The black lines represent constant χL.

same absorption coefficient can be recovered by having a different set of temperature and
log(g f ) values. Fig. 1.10 shows the absorption coefficient in the line for different sets of
the temperature and the log(g f ) parameter at a constant gas pressure. The same absorp-
tion coefficient can be reproduced at lower temperatures (below 4500 K) if we increase
the temperature and decrease the log(g f ) parameter; for temperatures above 5800 K, the
absorption coefficient shows no dependency on the log(g f ) parameter. Between these two
regimes, an increase in the temperature increases the log(g f ) while maintaining a constant
absorption coefficient. It must be mentioned that not every spectral line will show exactly
the same behaviour between the temperature and the log(g f ). However, they all exhibit a
similar cross-talk between them.

This shows that the same fit quality can be achieved with diverse sets of temperature
and log(g f ). Even a small difference in the temperature in the order of 100 K results in the
change of log(g f ) parameter by 0.01. It points to the weakness of a method from Trelles
Arjona et al. (2021) in decoupling the contribution of the temperature and the log(g f )
parameter to the absorption coefficient and, thus, to the resultant line profile. However,
the authors have developed a three-step procedure to overcome this cross-talk and obtain
reliable results.

Similar to the inference of the log(g f ) values from the spatially averaged disc-center
quiet-sun spectrum, the disc-integrated spectra of distant stars are also used to infer
log(g f ) values (e.g., Boeche & Grebel 2016, and references therein). This method de-
termines the log(g f ) parameter from the equivalent width of observed lines in the visible
and infrared wavelength regions that are useful for determining stellar parameters: ef-
fective temperature, surface gravity and elemental abundances (Bigot & Thévenin 2006,
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Boeche & Grebel 2016). They use 1D atmospheric models of different benchmark stars
(such as Sun, Arcturus, and Vega) to synthesize the spectra for different sets of log(g f )
values and match the synthetic to the measured equivalent width of the line. They employ
a grid search algorithm (Laverick et al. 2019, with seven benchmark stars), or a statistical
method called the cross-entropy method (Martins et al. 2014, with three benchmark stars).
The final result is the average log(g f ) retrieved from all benchmark stars.

The grid search and the cross-entropy methods are only applicable for measuring the
log(g f ) parameter of unblended spectral lines, as was the case for the log(g f ) inference
from the spatially averaged disc-centre quiet-sun spectrum. Boeche & Grebel (2016) pro-
posed measuring the equivalent width of a blended line pair in multiple spectra of different
benchmark stars to decouple each line’s contribution to the blended profile. This is possi-
ble if the number of blended lines is equal to or lower than the number of benchmark stars
and assuming that stellar parameters and line-broadening contributors are well-known.
A similar argument for decoupling the contribution of many lines in a blend is given by
Laverick (2019).

In the spatially resolved observations of the solar surface, individual pixels are char-
acterised by different thermodynamic and magnetic structures, producing diverse spectra.
These various spectra can be viewed as spectra observed from benchmark stars with differ-
ent effective temperatures and surface gravity. This thesis aims to use these diverse solar
spectra and determine the log(g f ) values for isolated and blended lines. We approached
this problem by developing a new inversion method that is described in Sec. 2.4.1.

1.3.2 The central wavelength
The central wavelength is an important parameter used to identify spectral lines. Misiden-
tifying the line could cause a wrong inference of log(g f ) not only from the observed
spectra, but also from the experimental measurements. The determination of the central
wavelength of a line directly follows from the knowledge of the energy of levels between
which the line originates. In the theoretical approach, when one of these levels has an
experimentally measured energy, the calculated wavelength is called the Ritz wavelength.

Accurate experimental measurements of the central wavelength of iron lines, with an
uncertainty of 2 mÅ at 1000 nm, can be achieved by the Fourier-transform spectrometer
(e.g., Nave et al. 1994). The central wavelengths are computed by matching the observed
wavelength of a line with the Ritz wavelength. Unidentified lines are verified by identify-
ing the energy levels between which they are formed. A new energy level is determined,
requiring that at least four observed lines originate from this level (see, e.g., Peterson &
Kurucz 2022).

The central wavelength of a line is usually simultaneously inferred with the log(g f )
from the observed spectra (Borrero et al. 2003). This is because these two parameters
are coupled, and the poor results for log(g f ) would be obtained if we do not account for
the uncertainty in the line central wavelength. This is especially important for blended
spectral lines because the inference algorithm can easily mix up the contribution of each
blended line to the final profile, thus leading to the wrong inference of log(g f ). Addition-
ally, any uncertainty in the wavelength position of spectral lines in the spectra introduces
an error in the inferred height variation of the line of sight velocity in the atmosphere.
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2 Spectropolarimetric inversions

The previous chapter briefly introduced radiative transfer theory and explained the for-
mation of spectral lines in a magnetized atmosphere. The physical conditions in the solar
atmosphere are encoded into spectral lines. The line absorption coefficient varies strongly
with wavelength within a spectral line, which causes photons to decouple from atmo-
spheric particles at different heights in the atmosphere1. Observations taken at different
wavelengths in a spectral line show atmospheric structures at different heights. This is
why spectral lines are an invaluable diagnostic tool for studying the stratification of phys-
ical parameters in the solar atmosphere.

The observations of the Stokes vector Oλ(x, y) for every point (x, y) in the field of
view and at every wavelength λ (containing one or many spectral lines), are transformed
into the 3D stratification of physical parameters using a spectropolarimetric inversion
method (or for short, inversion). The inversion method infers the physical parameters
of an atmospheric model by matching a synthetic spectrum computed from this model
with the observed one. To obtain the best match, we have to iteratively adjust physical
parameters because of the non-linearities in the polarised radiative transfer equation. The
physical parameters of the solar atmosphere that can be adjusted in each inversion step
are temperature T , line of sight velocity vLOS, magnetic field strength B, magnetic field
inclination θ, magnetic field azimuth ϕ and micro-turbulent velocity vmic. Some additional
parameters that are depth-independent can also be inferred, such as the macro-turbulent
velocity vmac or the filling factor2.

Currently, available inversion codes are well optimised for inference of the atmo-
spheric parameters assuming the line formation in LTE or in non-LTE (for an extensive
list of inversion codes, see del Toro Iniesta & Ruiz Cobo 2016). However, not many
of these codes can also infer the atomic parameters, which play an essential role in the
computation of the line absorption coefficient, altering the sensitivity of a line to the at-
mospheric parameters. Well-known inversion codes that are also capable of inferring the
atomic parameters along with the atmospheric parameters are SIR (Ruiz Cobo & del Toro
Iniesta 1992, Trelles Arjona et al. 2021), SPINOR (Solanki 1987, Frutiger et al. 2000) and
NICOLE (Socas-Navarro et al. 2015).

1Over the wavelength range of a given spectral line, we can safely assume that the continuum absorption
coefficient does not change with the wavelength and that it is much smaller than the absorption coefficient
in the line core.

2The filling factor defines the contribution of the magnetized atmosphere in the two-component atmo-
spheric models where the other one is non-magnetized. This parameter is used in low spatial-resolution
observations where the magnetic elements are not resolved well. With the advances in the instruments for
solar observations, we are approaching the resolution of the individual magnetic elements, and hence, the
filling factor is becoming obsolete.
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The aforementioned codes infer the atomic parameters for every resolution element
(henceforth pixel) in the observed field of view individually. However, the atomic pa-
rameters are intrinsic characteristics of atoms, independent of the underlying atmospheric
parameters in that pixel. In this thesis, we develop a new inversion method for inferring
spatially coupled atomic parameters and pixel dependent atmospheric parameters. This
new inversion method infers a single set of atomic parameters per spectral line that repro-
duces line profiles from different pixels simultaneously. We will focus on the inference
of the log(g f ) parameter and the ∆λ parameter, a correction to the central wavelength of
a spectral line. Nevertheless, the method is nowhere restricted only to these two param-
eters, and it can be extended to fit for elemental abundances, Landé g-factors, energy of
the lower level in a transition (energy of the upper level is computed simply as El + hνl,u),
collisional broadening parameter, etc. Simultaneous inference of all these parameters still
has to be investigated, along with the optimal inversion strategy in each case. In Sec. 4.4,
we briefly discuss the possibility for simultaneous inference of abundance and log(g f ).

The following sections review the mathematical background and techniques used for
inversions. These will be used later to describe the new method for a coupled inference of
the log(g f ) and ∆λ parameters. A review of the inversion method and many approaches
used to optimise the atmospheric and atomic parameters is given in del Toro Iniesta &
Ruiz Cobo (2016).

2.1 Pixel-by-pixel method
An important part of every inversion method is to define a merit function to be minimized
through the iterative correction of free (inversion) parameters. Spectropolarimetric inver-
sion algorithms generally use χ2 as a merit function, which is defined for each pixel as
(del Toro Iniesta 2003):

χ2(p) =
1

N − n

N∑
i=1

w2
i

σ2
i

· (Oi − Ii(p))2 , (2.1)

where the index i goes over each wavelength point for all four Stokes parameters (N =
4Nλ, Nλ being the number of wavelength points), and n is the number of free parame-
ters. The factor wi is the weight given to each wavelength, and σi is the corresponding
noise at this wavelength3. Oi denotes the observed Stokes vector, and Ii(p) denotes the
synthetic Stokes vector, with p representing an n-element vector of inversion parameters
(atmospheric and atomic parameters).

The inversion of spectropolarimetric observations is a non-linear optimisation prob-
lem. For this kind of problem, a regularly used optimisation scheme is the Levenberg-
Marquardt algorithm (Levenberg 1944, Marquardt 1963, henceforth LM), which is a com-
bination of the gradient descent and the Gauss-Newton methods for minimizing a merit
function.

The LM algorithm uses the first derivative of a model function to minimize the merit
function that defines a hypersurface in the inversion parameter space. The χ2 hypersurface

3In some equations for χ2, the noise and weight factors are given as a single quantity that is simply
referred to as weight.
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may have many local minima and usually only one global minimum corresponding to the
best inversion parameters set. However, some local minima can be almost as deep as
the global minimum because of the cross-talk between different inversion parameters (see
a discussion in Sec. 2.2). The LM algorithm efficiently finds a minimum of the merit
hypersurface but does not guarantee that the found minimum corresponds to the global
one. By adjusting the weights wi of different wavelengths in the spectrum, it is possible
to change the shape of the merit hypersurface. Such an adjustment can produce a more
pronounced global minimum and increase the efficiency of finding the global minimum
of the merit function. Finding the best fit to the observed spectrum depends on how close
the initial solution is to the optimal one, the complexity of the model function and the
employed weights.

In the LM algorithm, an initial guess for the inversion parameters is assumed to be
close to the global minimum. Expanding the merit function around the global minimum
in parameter space using a second-order Taylor polynomial yields (Press et al. 2007):

χ2(p) = χ2(pj) + ∆pT
j · ▽χ

2(pj) +
1
2
∆pT

j · H · ∆pj, (2.2)

where ∆pj = p − pj is a correction for the parameter vector pj in the j–th iteration, H
is the Hessian matrix of the system, and T indicates the matrix transpose. Based on our
assumption being at the minimum, we expect the gradient of χ2 to be zero, ▽χ2(p) = 0.
Thus, taking a gradient of Eq. (2.2), we obtain:

0 = ▽χ2(pj) +H · ∆pj, (2.3)

where d∆pj
dp = 1. In this derivation, we have used the identity:

d
(
∆pT

j · H · ∆pj
)

dp
=

(
H +HT

)
· ∆pj = 2H · ∆pj,

where we applied the symmetry property of the Hessian matrix, H ≡ HT. Solving
Eq. (2.3) gives the correction ∆pj for the initial parameter vector that minimizes χ2.

Here we have implicitly assumed that the correction of the inversion parameters pro-
duces a linear change in the model, which produces quadratic change in the χ2. Precisely
this linearisation of the non-linear model requires an iterative correction of inversion pa-
rameters. This way of deriving Eq. (2.3) is more suitable when regularisation functions
are added to the merit function (see Sec. 2.4.2 for more on regularisation), which are not
necessarily linear with respect to parameters.

The gradient of the merit function from Eq. (2.3) is:

−
∂χ2

∂pk
=

2
N − n

N∑
i=1

w2
i

σ2
i

· (Oi − Ii(p)) ·
∂Ii

∂pk
, (2.4)

where the term dIi
dpk

is the response function of the Stokes spectrum to the k–th inversion
parameter at wavelength i (del Toro Iniesta 2003, see also Sec. 2.2). With further differen-
tiation of Eq. (2.4) with respect to parameter pl, we obtain the Hessian matrix elements:

Hl,k =
∂χ2

∂pl∂pk
=

2
N − n

N∑
i=1

w2
i

σ2
i

·

[
∂Ii

∂pk
·
∂Ii

∂pl
− (Oi − Ii(p)) ·

∂2Ii

∂pl∂pk

]
. (2.5)
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The second term under square brackets in Eq. (2.5) is usually disregarded in LM inver-
sions (del Toro Iniesta 2003, de la Cruz Rodríguez et al. 2019). This is reasonable since
it was assumed that the initial solution was close to the minimum. Therefore, O − I(pj)
should be zero and the second-order derivatives will not influence the proposed parameter
steps. Disregarding second-order derivatives ensures that the Hessian matrix is positive
definite, and the step in parameter space leads to the minimisation of χ2. In some oc-
casions, the second-order derivatives can even lead to corrupted behaviour (Press et al.
2007).

Substituting Eq. (2.4) and Eq. (2.5) into Eq. (2.3), and identifying new terms, we
obtain:

H · ∆pj = J
T · ∆, (2.6)

where ∆i =

√
2

N−n ·
wi
σi
·
(
Oi − Ii(pj)

)
and J is the Jacobian matrix of the system whose

elements are given as:

Ji,k =

√
2

N − n
wi

σi

∂Ii

∂pk
.

The linearisation of the Hessian matrix allows us to express it through the Jacobian matrix
asH = JTJ .

Fitting non-linear models to observed data can lead to poor parameter corrections. To
address this issue, the diagonal elements of the Hessian matrix are multiplied with a factor
λM and added to the Hessian, yieldingH = JTJ +λM · diag(JTJ). This factor is known
as the Marquardt parameter and regulates the magnitude of the parameters correction (i.e.,
∆pk ∝ 1/λM). For fast convergence, the Marquardt parameter should be small enough
(e.g., λM < 10−2) but not too small to overstep the global minimum. The Hessian matrix
is diagonalised for large values of the Marquardt parameter, and the parameter corrections
are obtained from the gradient descent method. Approaching the χ2 minimum, λM is
smaller, allowing off-diagonal terms in the Hessian matrix to influence the parameter
correction. These corrections are obtained then using the Gauss-Newton method, which
ensures faster convergence to the minimum.

The iterative procedure for finding the χ2 minimum and obtaining the best set of in-
version parameters is the following. Start from an initial solution p0, which is assumed
to be close to the global minimum. For this initial solution, Eq. (2.6) is solved to get the
parameter correction ∆pj. The new spectrum is computed for pj = p0+∆pj and compared
with the observed spectrum. If the proposed parameter correction yields a lower χ2, the
new parameter vector pj is accepted and the λM parameter is lowered. However, if the new
parameter values pj deliver a larger value of χ2, we reject them, raise the λM parameter,
and calculate a new correction. This process is repeated until the desired accuracy or a
maximum number of iterations is reached. Change in the Marquardt parameter is done by
multiplying it or dividing it by a factor of 10.

Applying the LM algorithm to each pixel individually retrieves a single set of values
for inversion parameters that reproduce the observed Stokes profiles in a given pixel. This
method of inferring the inversion parameters is called the pixel-by-pixel method, and it is
the most used approach for the inversion of solar observations.
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2.2 Response functions
The response functions are a necessary part of the LM inversion algorithm since they
are used to construct the Jacobian and Hessian matrices that regulate the magnitude of
parameter corrections, minimising the χ2 value. The response functions describe the re-
sponse of the Stokes vector due to a small perturbation of physical parameters. Strictly
mathematically speaking, we can write the response function for a parameter q as:

Rq(τ, λ) =
dIλ(τ)

dq
, (2.7)

at the optical depth τ at the wavelength λ. For a single atmospheric model, the response
function is a four-dimensional vector in the space of the inversion parameters, atmospheric
depth points, wavelengths and Stokes components.

Eq. (2.7) suggests that when we have the solution for Iλ(τ), we can differentiate it
over each inversion parameter and obtain the equation for the response functions. In
general, the polarized radiative transfer equation does not have an analytical solution, and
it is solved by applying a numerical method. Consequently, the response functions must
also be calculated using some numerical method. The analytical solution of the polarized
radiative transfer equation (and so for the response functions) exists only in exceptional
cases, such as the weak-field approximation and the Milne-Eddington solution (we will
not consider these solutions here; for more details, see, e.g., Sanchez Almeida 1992, Landi
Degl’Innocenti & Landolfi 2004).

The simplest and most straightforward way for computing the response functions is
using a numerical central difference method (see, e.g., Quintero Noda et al. 2016). From
the initial value of a parameter, we make a positive perturbation by a small amount δq
and compute the resulting Stokes vector I+. Next, starting from the same initial value, we
repeat the process with a negative perturbation of the same magnitude and compute the
corresponding Stokes vector I−. The response function of a given parameter is computed
as I+−I−

2δq . This numerical method allows us to compute the response function for arbitrarily
complex atmospheric stratifications.

Another way of computing the response functions is using the linear perturbation
method: inducing a small perturbation, δq of an inversion parameter produces a linear re-
sponse in the Stokes vector (Landi Degl’Innocenti & Landi Degl’Innocenti 1977, Sanchez
Almeida 1992). For simplicity, we shall consider here only the specific intensity Iλ and
write:

µ ·
d(Iλ + δIλ)

dz
= −(χλ + δχλ) · (Iλ + δIλ) + (ηλ + δηλ), (2.8)

where δIλ is a resultant small perturbation of the specific intensity Iλ, δχλ and δηλ are
the small perturbations of the absorption and emission coefficients. After multiplying
the brackets and ignoring the second-order term, δχλδIλ, we recognize the terms from
Eq. (1.3) that cancel each other. The leftover terms yield:

µ ·
dδIλ
dz
= −χλ · δIλ − δχλ · Iλ + δηλ. (2.9)

If we group the last two terms in a single term labeled as η′λ and divide the whole equation

47



2 Spectropolarimetric inversions

by −χλ, we end up with the equation:

µ ·
dδIλ
dτλ
= δIλ − Zλ, (2.10)

which has the same form as Eq. (1.4) and its solution for δIλ can be written as Eq. (1.7). In
Eq. (2.10), the Zλ term is the source function for the perturbation defined as Zλ = η′λ/χλ.

If we have already developed a numerical method to solve the polarized radiative
transfer equation, we can use the same one to obtain the response functions. The only
thing missing are the perturbations of the absorption and emission coefficients, where all
the dependencies on the atmospheric and atomic parameters are hidden. The strength of
this method is that the response functions are computed synchronously with the Stokes
vector, with a few additional terms that need to be computed. The convenience of this
method for calculating the response functions of inversion parameters, its complexity, lim-
itations and usefulness, and comparison with the central difference method is thoroughly
described in Milić & van Noort (2017). The method is general enough to be applied to
spectral lines modelled in the LTE or non-LTE approximation. However, currently, it is
developed only for lines that can be realistically modelled using the complete frequency
redistribution approximation. We have to remark here that even though Eq. (2.10) is con-
venient to calculate the response functions, it is still an approximation, assuming that the
perturbation of a parameter produces a linear response of the Stokes vector.

Fig. 2.1 displays the response functions for temperature, line of sight velocity, mag-
netic field strength, inclination and azimuth and log(g f ) for the Fe I line pair at 6301.5 Å
and 6302.5 Å. Each panel that displays the response function for atmospheric parame-
ters shows its variation with wavelength and depth in the atmosphere, where the colour
corresponds to the magnitude of the response function. Since the log(g f ) is an atomic
parameter, it is depth-independent, and its response function thus varies only with wave-
length. Hence, in the last row of Fig. 2.1, the y–axis represents the magnitude of the
response function for log(g f ).

The response functions are computed using the central difference numerical method
with spectra normalized to unity. The spectrum’s normalisation shifts the response of the
continuum to the temperature perturbation into the line core (blue region in the top-left
panel). We interpret this as follows: if we increase the temperature around the depth
point log(τ) = 0, the continuum intensity will increase, thus making the line stronger
by increasing its depth (the observed intensity in the line core would be smaller; hence,
a negative sign for the response). The reverse situation happens if the temperature is
increased around the height with the largest response in the line core. This increase causes
the line to be weaker, which is observed as an increase in the line core intensity.

A negative value of the response function for log(g f ) in Stokes I indicates that the
increase in log(g f ) increases the strength of the line, more in its wings than in the core.
Similarly, we interpret all other panels that clearly show how valuable the response func-
tions are in inferring the atmospheric and atomic parameters from the observed Stokes
vector. The panels for the response functions for temperature and log(g f ) in Fig. 2.1
indicate the aforementioned cross-talk between these two parameters, which impacts the
proper retrieval of both. Simultaneous inference of these two parameters requires an ap-
proach that would decouple their impact on the Stokes vector by imposing additional
constraints.
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Figure 2.1. The response functions for temperature (first row), line of sight velocity
(second row), magnetic field strength (third row), inclination (fourth row), azimuth
(fifth row) and the log(g f ) parameter (sixth row) for the Fe I line pair at 6301.5 Å
and 6302.5 Å. The log(g f ) response functions are computed for each line separately
where black lines correspond to the 6301.5 Å line, and red lines to 6302.5 Å. The
response functions are computed from the FAL-C atmospheric model with added
magnetic field vector of B = 800 G, θ = 60◦ and ϕ = 30◦. The vertical columns
correspond to each Stokes component respectively.
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2 Spectropolarimetric inversions

Another fact evident from Fig. 2.1 is the broad range of the Stokes vector sensitivity
to perturbations in different parameters. We must remember that the response functions
have a unit, which is an inverse of the unit of the parameter. The change of the unit system
used in the inversion algorithm will also change the magnitude of the response functions
for different inversion parameters. One way to approach this is to normalize the response
functions and make them unitless by choosing a proper normalisation value. A suggestion
by de la Cruz Rodríguez et al. (2019) is to use typical values of inversion parameters es-
timated in the solar atmosphere as a normalisation factor. Even this normalisation allows
for smaller variations between the response functions for different parameters. The same
type of normalisation is also implemented in the SNAPI code (Milić & van Noort 2018).
We will discuss another way of normalising the response functions in Sec. 3.1.2.3.

Spectropolarimetric inversion is a degenerate ill-posed problem where different sets
of atmospheric parameters can result in very similar spectra (for a review see del Toro
Iniesta & Ruiz Cobo 2016). This implies that a certain degree of cross-talk exists be-
tween the atmospheric parameters even when the atomic parameters are well known. The
parameters cross-talk is evident from the response functions in Fig. 2.1 where the Stokes
vector shows a similar response to perturbations in different parameters. The response
functions give us qualitative information that this cross-talk exists and can impact the in-
ference of inversion parameters but do not indicate the strength of the cross-talk. The best
way of examining the strength of the parameters cross-talk is to analyze the shape of the
χ2 hypersurface.

In the case of magnetic field inference, the linear polarisation signals, Q and U, are
characterized by 180◦ ambiguity in azimuth, ϕ. This aspect is evident from equations for
the elements of the propagation matrix, where absorption elements for Q and U are:

ηQ ∝ cos (2ϕ) ,
ηU ∝ sin (2ϕ) .

(2.11)

The exact proportionality also holds for the dispersive elements ρQ and ρU . Changing
ϕ by 180◦ produces the same Stokes vector (Stokes Q takes the shape of Stokes U, and
vice versa), and the inversion code cannot differentiate between these two cases since
both provide an equally good fit. Magnetic field disambiguation can be done by, e.g.,
the minimum energy ambiguity resolution method (Metcalf 1994) or, since the launch of
the Solar Orbiter (Müller et al. 2020), by the stereoscopic disambiguation method (Valori
et al. 2022).

When the atomic parameters are also inverted, the parameters cross-talk becomes even
more significant, especially between those quantities that affect a given spectral line sim-
ilarly, for example, between T and log(g f ) (see Fig. 1.10), and between vLOS and ∆λ. For
example, the change in the central wavelength of Fe I 6301.5 Å line by 15 mÅ causes a
shift in vLOS by 0.95 km/s. The simultaneous inference of vLOS and ∆λ requires at least
one spectral line with a fixed central wavelength, which is used as an anchor point to
which the central wavelengths of other lines and vLOS are measured.

The previous discussion shows that the computation of the response functions is more
demanding than computing a single Stokes vector. The inversion of observed spectra re-
quires calculating the response functions for each inversion parameter in each iteration
step, significantly increasing the computational complexity. We aim to simplify our at-

50



2.3 Parametrization of atmospheric stratification

mospheric models to reduce the computations and, simultaneously, have complex enough
models that reproduce the observed spectra.

2.3 Parametrization of atmospheric stratification

To minimize the impact of a numerical error on the computed Stokes vector, we require
the stratification of inferred atmospheric parameters from photospheric up to chromo-
spheric layers to be specified on a fine grid. This makes inference of each atmospheric
parameter at every height intractable and computationally demanding. Therefore, a feasi-
ble inference of atmospheric parameters requires an approximation for their stratification.
One kind of approximation is to parametrize the atmospheric stratification using a few
points at properly chosen depths and interpolate between them to obtain values on a finer
grid as needed for the spectral synthesis (Ruiz Cobo & del Toro Iniesta 1992, del Toro
Iniesta 2003). These points are called nodes and are placed over the range over which the
line and its nearby continuum respond to changes in the atmospheric parameters.

There exist two types of node parametrization. The first one assumes that nodes con-
tain the corrections to the initial values of atmospheric parameters. Interpolation between
the nodes gives a correction, added to the initial fine stratification of atmospheric param-
eters. This type of node parametrization requires the node’s placement at the top and
bottom boundaries of an atmospheric model. Choosing a different number of nodes will
impose different corrections to the atmospheric parameters. In the case of a single node,
we apply a constant correction at every depth; with two nodes, we have a linear cor-
rection; with three nodes, we have a quadratic correction and so on. This type of node
parametrization is implemented in inversion codes SIR and DeSIRe (Ruiz Cobo et al.
2022).

The second type of node parametrization assumes that nodes contain absolute values
of the atmospheric parameters. Interpolation between these nodes provides a fine strati-
fication of atmospheric parameters. This type of node parametrization allows us to place
nodes throughout the atmosphere over heights at which spectral lines are formed. It is
implemented in many codes such as SPINOR, NICOLE, STiC (de la Cruz Rodríguez et al.
2019) and SNAPI.

However, choosing the correct positions of nodes is an art in itself. There has yet
to be an explicit way for computing the required node positions. An intelligent way
of node placement could be based on the response functions in each iteration, allowing
for variable node placement. For now, it is left to a user to choose node positions (and
number of nodes) based on the inverted observations (observed spectral lines, complexity
of observed line profiles, wavelength sampling, noise level) and the user’s experience in
inverting data. A rule of thumb for choosing the node positions is based on the response
functions computed assuming a representative 1D solar atmosphere model (such as FAL-
C). We tend to place nodes in a range of heights where the response of a Stokes vector to
parameter perturbations is the largest. Even then, a user must remember that the response
functions differ for different atmospheric models: the height range in which a line is
sensitive to atmospheric parameters is altered between various solar features.

Using any of the node approximations significantly simplifies the inversion of obser-
vations and inference of the atmospheric parameters. Since the computation of response
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2 Spectropolarimetric inversions

functions is very computationally heavy, lowering the number of atmospheric parameters
improves the tractability of an atmospheric model.

2.4 The coupled inversion
An observed spectrum from a single pixel contains contributions from other nearby pixels
because of the light diffraction and scattering by telescope and instrument elements, mod-
elled by the point spread function (PSF). If the observations are taken from the ground,
additional degradation of observations is caused by the refraction of light in the Earth’s
atmosphere. These effects are removed from observations by deconvolving them with the
PSF of a telescope. This deconvolution recovers the original spectrum in each pixel but,
at the same time, significantly increases the noise level in data. Inverting these observa-
tions with the pixel-by-pixel method described in Sec. 2.1 can produce results severely
impacted by the noise. Thus, the inferred atmospheric parameters from a given pixel
do not necessarily relate to the actual physical state of an atmosphere which emitted the
observed spectrum.

To improve the quality of inferred parameters, we can follow a reversed approach: the
synthetic spectra computed for each pixel in an observed field of view are first convolved
with the PSF of a telescope and then matched to the observed spectra. The convolution of
spectra from individual pixels introduces a spatial coupling between pixels and requires
simultaneous match in all pixels to infer the inversion parameters. This inversion idea,
named spatially coupled inversion, is presented by van Noort (2012). The convolution
of spectra with the PSF of a telescope produces line profiles that should resemble the
observed line profiles better than the profiles computed from a single atmospheric model.
In van Noort et al. (2013), the method is extended to infer the atmospheric parameters
on a sub-pixel scale, which is no smaller than the resolution limit of a telescope. This
improvement increases the spatial resolution of the inferred atmosphere and maintains a
robust inference of the inversion parameters (see, e.g., van Noort et al. 2013, Tiwari et al.
2013, 2015, Castellanos Durán et al. 2023).

Later, de la Cruz Rodríguez (2019) introduced a spatial regularisation method that
limits the spatial variation of inversion parameters (for more details, see Sec. 2.4.2). Be-
cause of the energy exchange in the solar atmosphere between plasma parcels enclosed
within each pixel, the neighbouring atmospheres are expected to have very similar phys-
ical parameters. That way, neighbouring pixels are effectively coupled, and it imposes a
global optimisation for inversion parameters.

Both of these techniques were mainly concerned with retrieving atmospheric param-
eters, whereas in this thesis, we focus on the inference of atomic parameters. We have
chosen to follow the approach of van Noort (2012) and to infer any global, field-of-view
independent parameters, and in this thesis, the atomic parameters are log(g f ) and ∆λ.

2.4.1 Coupling of atomic parameters

In the pixel-by-pixel method, the Jacobian and the Hessian matrices are constructed for
every pixel where Eq. (2.6) provides a parameters correction independently from other
pixels. In the method for coupled inference of atomic parameters, a global parameter has
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a uniform value in all pixels whose retrieval requires a coupling between the pixels. This
coupling is introduced by requiring a simultaneous match of synthetic Stokes profiles
to the observed ones from all the pixels. In this method, which we named the coupled
method, inversion parameters are obtained by minimizing the sum of χ2 of all the pixels:

χ2
global(p) =

1
N − Np

Natm∑
a=1

N∑
i=1

w2
i

σ2
i

·
(
Oi,a − Ii,a(p)

)2 , (2.12)

where the index a goes over every pixel in the observed field of view containing the total
number of pixels Natm, and Np is the total number of free parameters summed over all
pixels. Here, the parameter vector p contains inversion parameters from every pixel in the
field-of-view p = (p1,p2, . . . ,pNatm).

The merit function for the coupled method is similar to the one given for the pixel-by-
pixel method, except for the addition of a summation which runs over all pixels (atmo-
spheres). Therefore, following the same procedure as in the pixel-by-pixel inversion, we
derive an equation for the correction of the inversion parameters in the coupled method:

Hglobal · ∆pj = J
T
global · ∆ (2.13)

where Hglobal and Jglobal are the global Hessian and Jacobian matrices of the system,
respectively. The global Hessian and Jacobian matrices are connected in the same manner
as in the pixel-by-pixel method. Therefore, to explain how the coupled method works, it
would be sufficient to derive the global Jacobian matrix.

In the pixel-by-pixel method, column k in the Jacobian matrix contains the response
function Rk of the Stokes vector to the k–th inversion parameter, where Rk is a vector of
length 4Nλ. In the case of n inversion parameters, the Jacobian matrix for a single pixel
has a dimension (4Nλ, n) and can be written as J = (R1,R2, . . . ,Rn).

The global Jacobian matrix of the system is constructed by placing the Jacobian matrix
of each individual pixel on the diagonal:

Jglobal =



J1 0 · · · 0
0 J2

· · ·

· · ·

· · ·

JNatm−1 0
0 · · · 0 JNatm


. (2.14)

This block-diagonal matrix represents the uncoupled inference of parameters for each
pixel. The transposed form of a block-diagonal matrix is a block-diagonal matrix of
transposed sub-matrices, resulting in a block-diagonal global Hessian matrix. The global
Jacobian matrix corresponds to the model with n · Natm number of inversion parameters
and has a dimension (4NλNatm, n · Natm).

The global Jacobian matrix’s block-diagonal form must be disrupted to achieve a cou-
pled inversion. In the spatially coupled method of van Noort (2012), the diagonal form
of the global Jacobian matrix is disrupted by convolving it with the PSF of the telescope
(see Fig. 2.2). For the coupled inference of atomic parameters only, we need to couple
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2 Spectropolarimetric inversions

only those parts of the global Jacobian matrix that contain the response functions to the
atomic parameters.

Let us assume that out of n parameters for each pixel, we have l local (atmospheric)
and g global (atomic) parameters (n = l + g). The atmospheric parameters vary between
pixels due to the different physical structures of each underlying atmosphere, while atomic
parameters are the same for every pixel. In the coupled method, the total number of
inversion parameters is, therefore, Natm · l + g, whereas, in the pixel-by-pixel method, this
number is Natm ·(l+g). Additionally, we assume that the inversion parameters in the vector
p are ordered from atmospheric to atomic.

Substituting the Jacobian sub-matrices with the response functions yields:

Jglobal =



R1
1 . . .R

1
l R1

l+1 . . .R
1
l+g 0 · · · 0

0 R2
1 . . .R

2
l R2

l+1 . . .R
2
l+g ·

· · ·

· · ·

· · 0
0 · · · RNatm

1 . . .RNatm
l RNatm

l+1 . . .RNatm
l+g


, (2.15)

where the upper index in the response function corresponds to the pixel number.
We have to reorder the response functions in this matrix to achieve the coupled infer-

ence of atomic parameters. For a single global parameter, we take its response functions
for all the pixels and form a single column. Consequently, for the k–th parameter we
have

(
R1

k ,R
2
k , ...,R

Natm
k

)T
. Further, we repeat this process for each global parameter in the

inversion. This results in a total of g columns that contain only the response functions
to the global parameters. Then, we move these columns to the right side of the matrix.
The rest of the matrix contains only the response functions to the local parameters. These
response functions form a sub-matrix, which has a block-diagonal form. Therefore, the
global Jacobian matrix after the reordering of the response functions is:

Jglobal =



R1
1 . . .R

1
l 0 · · · 0 R1

l+1 . . .R
1
l+g

0 R2
1 . . .R

2
l · R2

l+1 . . .R
2
l+g

· · · ·

· · · ·

· · 0 ·

0 · · · RNatm
1 . . .RNatm

l RNatm
l+1 . . .RNatm

l+g


. (2.16)

The block-diagonal form of the global Jacobian matrix is retained only for the local
parameters, and the coupling is introduced only for the inference of global parameters.
Corrections of global parameters are determined from spectrum differences in all pixels,
while corrections for local parameters are determined from the spectral difference in a
given pixel. This reordering keeps the pixel-by-pixel inference of atmospheric parameters
and introduces the coupling of, e.g., atomic parameters.

The dimension of the global Jacobian matrix with coupling in atomic parameters is
(4NλNatm,Natml + g), which is lower in comparison to a global Jacobian matrix for un-
coupled inversion due to the grouping of the response functions of the global parameters.
This coupling lowers the number of free parameters in the inversion, resulting in a χ2

hypersurface that should produce fewer local minima. In the coupled method, we invert
the same number of data points as in the pixel-by-pixel method with fewer parameters.
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This adds more constraints to the inversion parameters and aids the inversion algorithm
in finding the global minimum.

In the coupled method, a single value of the Marquardt parameter controls the step
sizes for all parameters. In contrast, each pixel has its own Marquardt parameter in the
pixel-by-pixel method. This difference has consequences in effectively locating the global
χ2 minimum. A similar set of equations is solved in the spatially coupled method of van
Noort (2012). The author argues that to achieve convergence to the global minimum
effectively, the inversion should be run for a small number of iterations (∼10), after which
the parameters are perturbed and used as initial values for the following inversion run.
This way, the LM algorithm is kicked from any local minimum it may have strayed into
to locate the global minimum.

2.4.2 Inversion parameters regularisation
The solution of ill-posed problems is susceptible to minor changes in the input parameters
or the quality of observed data that can cause a very divergent solution, as is the case
for spectropolarimetric inversions. The stabilisation of inferred parameters is achieved
by imposing a regularisation of the inversion parameters. One type of regularisation is
Tikhonov regularisation (Tikhonov & Arsenin 1977) which adds a quadratic penalizing
term, Ω(p, c), into the merit function as:

χ2
reg = χ

2 + Ω(p, c), (2.17)

where c is a regularisation weight that controls the strength of the regularisation imposed
on each inversion parameter.

The regularizing function is chosen based on what kind of penalisation we want to
achieve either in the horizontal or vertical direction: improving the smoothness of the in-
version parameters and penalizing the gradients or deviations from some constant value.
For the aforementioned spatial regularisation, de la Cruz Rodríguez (2019) suggests pe-
nalizing for strong oscillations in the inversion parameters between neighbouring pixels
using the penalizing functions:

P0,k(i, j) = pk(i, j) − pk(i − 1, j)
P1,k(i, j) = pk(i, j) − pk(i, j − 1).

(2.18)

This type of spatial regularisation couples the pixels above and to the left of the current
pixel position (i, j), leading to a smooth spatial distribution of k–th inversion parameter
pk. The regularisation function Ω in this example has the following form:

Ω(p, c) =
npen∑
k=1

ck ·
(
P2

0,k + P
2
1,k

)
, (2.19)

where npen is the number of penalized inversion parameters, and we already summed the
penalizing functions P0 and P1 over all pixels.

With the additional regularisation function, Eq. (2.13) is slightly modified. Owing to
the nature of derivatives, it is sufficient to compute the Jacobian matrix of the regularisa-
tion function, L, whose (l,m)–th element is the first derivative of the regularisation func-
tion for parameter pl to the parameter pm. Following the same procedure as in Sec. 2.1,
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the correction of inversion parameters ∆p using the LM method with the regularisation
function yields:

Hglobal · ∆p = JT
global · ∆ − L

TP . (2.20)

Assuming that the penalizing functions are linear with respect to the inversion param-
eters, the global Hessian matrix, before applying the Marquardt correction, is constructed
asHglobal = J

T
globalJglobal+L

TL (for non-linear penalty functions see Appendix B in de la
Cruz Rodríguez et al. 2019). The elements of the L matrix and the penalizing functions
vector P contain a multiplicative factor

√
ck.

The difficult part of the regularisation method is to find the correct regularisation
weight c. Imposing strong regularisation to the inversion parameters causes the regu-
larized merit function to be insensitive to the physical model. Thus, inferred values may
not describe the actual physical nature of the solar atmosphere. Conversely, the inver-
sion is hardly regularised if the regularisation weight is low. Specifying the regularisation
weight a priori to the inversion is pointless because it depends on the data and the chosen
physical model (node positions). It is suggested by de la Cruz Rodríguez et al. (2019)
to perform an inversion on a small number of pixels from an observed field of view with
different sets of regularisation weights. The regularisation weight for which the penal-
izing term Ω(p, c) and χ2 are comparable allows for the reliable regularized inference of
inversion parameters. In the first few iterations, the minimisation of χ2

reg must be driven
by a physical model, while in later iterations, we should also allow for the minimisation
of the regularisation function.

The coupled method retrieves the self-consistent solution for the atmospheric and
atomic parameters simultaneously without imposing additional approximations not al-
ready used in other inversion methods. Due to the method design, it is straightforward
to extend it to account for the spatial coupling method from van Noort (2012) and the
spatial regularisation from de la Cruz Rodríguez (2019). Fig. 2.2 shows the structure of
the global Hessian matrix in an uncoupled case, and in the case of the spatial coupling,
spatial regularisation and the coupling in atomic parameters.

Applying the spatial coupling or the spatial regularisation to the atmospheric parame-
ters in the coupled method should also provide a more reliable inference of atmospheric
and atomic parameters. However, these extensions will come with significant computa-
tional costs and will slow down the inversions significantly. Nevertheless, the primary
purpose of the coupled method is to provide reliable atomic parameters, which could be
used to infer the atmospheric parameters using any other inversion method.

The coupling of pixels, imposed either using the spatially coupled or the spatial regu-
larisation method, causes the weakening of the inversion parameters cross-talk (de la Cruz
Rodríguez 2019). We have arrived at the same conclusion using the coupled method: the
coupling of pixels for the inference of atomic parameters improves the reliability of the
inferred parameters, not only of atomic parameters but atmospheric ones as well (the re-
sults from this test are presented in Sec. 3.2). Coupling of any kind limits the possible
values of inversion parameters that are needed to reproduce the observed spectra.
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Uncoupled PSF coupling spatial regularization
spatial coupling

of atomic parameters

Figure 2.2. Structure of Hessian matrices for different global optimisation methods.
First panel: The global Hessian matrix in uncoupled case (the pixe-by-pixel method).
Second panel: Hessian for the PSF coupling of individual pixels from a 6× 6 field of
view. Each matrix element represents the Jacobian matrix of individual pixels. The
shading of each matrix element depicts the strength of the coupling: far-away pixels
are much less coupled. Third panel: Hessian for the spatial regularisation case. Off
diagonal elements represent coupling in inversion parameters using the penalisation
functions from Eq. (2.18). Shading depicts the correlation between inversion param-
eters. Forth panel: Hessian for the coupling in atomic line parameters coloured in
blue, while atmospheric parameters are coloured in red. Shading of matrix elements
has the same meaning as for the spatial regularisation case.
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3 globin: spectropolarimetric
inversion code for the spatially
coupled inference of atomic line
parameters

The coupled method described in Sec. 2.4.1 is implemented in the new inversion code,
named after the method itself as globin, which is written in Python and uses the RH code
(Uitenbroek 2001) for the spectral synthesis that solves the polarized radiative transfer
equation for non-LTE line formation using the multilevel accelerated lambda iteration
scheme (Rybicki & Hummer 1991). We opted for the RH code because of its versatility in
treating non-LTE line formation, partial frequency redistribution and continuum opacity
fudge correction (Bruls et al. 1992). All these features will be necessary for future spectral
analysis of many spectral lines (for future application ideas, see Sec. 4).

This chapter describes the necessary input data for the synthesis and inversion of ob-
served data using globin and setting the atmospheric parameters on a fine grid and the
inversion strategy. We will not discuss in depth the spectral synthesis since it is based
on the RH code. The focus will be on globin specific parameters, and interested read-
ers and users are advised to consult the RH documentation instead. At the end of the
chapter, we present a comparison between the pixel-by-pixel method and the coupled
method for retrieving the proper values of atomic parameters from a synthetic spectrum
in 4015 − 4017 Å wavelength range, which contains 18 spectral lines.

3.1 Implementation
The modified version of the RH code used in globin is imported as a separate module
that uses Cython to compile the C files of RH as a Python module. The modifications of
the RH code are intended to speed up the spectral synthesis by eliminating all output file
creation, allocating the space in the working memory to save the emission and absorption
coefficients instead of using files and rewriting the function for computing the spectrum
for a specific direction µ (solveray executable in RH). All these modifications are per-
formed to preserve all the functionalities of the original RH code and target only the 1D
spectral synthesis mode.

The modified version of RH is part of a separate module, which we named pyrh. Even
though it can be used as a stand-alone Python module for spectral synthesis using RH, it
is primarily created to be used within globin as a synthesis module.
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The globin code utilises the multi-threading of PCs and cluster machines using the
multiprocessing module1. The user specifies the number of threads used for spectral
synthesis. We have opted for parallelisation of the spatial domain of observations, as it is
usually done in all the inversion codes. The RH code parallelises the wavelength domain to
speed up spectral synthesis. This feature is obsolete in pyrh by hard-coding the number
of threads to unity.

The globin code has four different modes of operation: synthesis, pixel-by-pixel
inference of atmospheric parameters only, pixel-by-pixel inference of atmospheric and
atomic parameters, and pixel-by-pixel inference of atmospheric parameters with spatially
coupled inference of atomic parameters. We will first introduce the synthesis mode de-
scribing the atmospheric model structure and required globin input parameters. We will
only discuss the necessary parameters for LTE spectral synthesis since the code has yet
to be extensively tested for modelling non-LTE spectra. After describing the synthesis
mode, we will describe inversion input parameters and inversion-specific methods for
constructing the atmospheric model and inferring the inversion parameters.

In synthesis or inversion mode, the control of globin is performed through different
files with the extension .input. Since the pyrh is a wrap around the RH code, globin still
relies on the same input files as RH does. The additional input file named params.input
contains all the keywords used to control globin. A list of all keywords specific to
globin that can be specified in the params.input file is given in Appendix A along
with their default values and short descriptions. Throughout the description of synthesis
and inversion modes, we will refer only to the most relevant keywords.

3.1.1 Spectral synthesis mode
The spectral synthesis, in general, requires a user to provide an atmospheric model, a list
of spectral lines to be synthesized and the wavelength range over which the spectrum is
to be computed. The line list is provided in Kurucz format using the keyword linelist.
The wavelength range is controlled either using keywords wave_min, wave_max and
wave_step in Å or providing a file name containing the wavelength grid using a key-
word wave_grid.

The globin code supports reading a 1D model atmosphere in MULTI format (Carls-
son 1986) from a text file with an extension .atmos or 3D atmospheric model in a FITS
file format. Here, we will only describe the atmospheric model given in FITS file format,
unique to globin, while the 1D MULTI type model is described in the RH documentation.

The default structure of atmospheric model in globin has atmospheric parameters in
the following order: depth scale, temperature T , electron number density ne (in cm−3),
line of sight velocity vLOS and micro-turbulent velocity vmic (both in km/s), magnetic field
strength B (in Gauss), magnetic field inclination θ and azimuth ϕ (both in radians), and
the total hydrogen number density (sum of neutral and ionized hydrogen number density;
ntot

H in cm−3). The depth scale of the atmospheric model used in RH to compute a spectrum
must be either a height scale (in km), a column mass density (in cm2/g) or the optical
depth at 5000 Å2. The type of depth scale used for atmospheric parameters stratification

1https://docs.python.org/3/library/multiprocessing.html
2The wavelength of a given optical depth scale can be specified by a user in RH. However, in the follow-

ing, we will always assume it is set to 5000 Å.
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is specified in the header of the FITS file using the keyword SCALE. The shape of an
atmospheric model array in the FITS file format is assumed to be (nx, ny, np, nz), where np

is the number of atmospheric parameters.
The globin code also supports the atmospheric models of SPINOR and SIR types that

are used accordingly in SPINOR and SIR inversion codes. These atmospheric types can be
specified as a 1D model in a text file or using the FITS file with the same shape as globin
default type, except having different np. The type of atmospheric model provided to
globin is specified using the keyword atm_type. When globin loads the atmospheric
model, it is internally converted to its default type.

The class Atmosphere() handles all the operations performed on the atmospheric
model. It controls the input and output of an atmospheric model, converts between dif-
ferent model types, computes spectra and response functions for given parameters, sets
the atmospheric parameters on a finer grid and many less significant operations. By de-
fault, globin has access to FAL-C and HSRA atmospheric models that can be used for
a quick spectral synthesis. An example of how simple it is to synthesise the spectrum
using globin (assuming that the RH specific input files are correctly configured) is given
in Listing 3.1.

Listing 3.1. Synthesis example for Hinode lines using globin. This example does
not require the use of params.input file.

1 import globin
2

3 # read in the atmosphere; we take internally loaded FAL-C
4 atmos = globin.falc
5 # set up the wavelength grid for which to compute spectrum
6 atmos.set_wavelength(lmin=6301, lmax=6303, dlam=0.010, unit="A")
7

8 spec = atmos.compute_spectrum()

The computed spectrum is, by default, given in absolute units of W/m2/Hz/srad. There
are three different types of spectral normalisation implemented in globin that are con-
trolled with the keyword norm:

norm = 1: the spectrum continuum is set to unity, where the reference intensity is
taken at the first wavelength point in the given pixel.

norm = hsra: the spectrum is normalized with respect to the continuum intensity
(at the first wavelength point) from the HSRA atmospheric model.

norm = Ic: the provided Ic value normalizes the synthetic spectra.

The minimal required params.input file for spectral synthesis is shown in List-
ing 3.2 and the corresponding Python code to synthesise spectra in Listing 3.3.
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Listing 3.2. Minimal params.input file needed for spectral synthesis.
1 # number of threads
2 n_thread = 1
3 # synthesis: mode = 0
4 mode = 0
5 # Gaussian noise level to be added
6 noise = 1e-3
7 # macro-turbulent broadening [km/s]
8 vmac = 1.2
9 # type of spectral normalisation

10 norm = 1
11

12 # \mu value for which to compute the spectrum
13 mu = 1
14 # spectrum output file name
15 spectrum = spec_mu1_hinode_falc.fits
16

17 linelist = hinode_lines
18 wave_min = 6301
19 wave_max = 6303
20 wave_step = 0.010
21

22 # atmospheric model and type
23 cube_atmosphere = falc.dat
24 atm_type = spinor

Listing 3.3. Spectral synthesis using the params.input file from Listing 3.2
1 import globin
2

3 inverter = globin.Inverter(verbose=True)
4 inverter.read_input(run_name="synthesis",
5 globin_input_name="params.input",
6 rh_input_name="keyrwords.input")
7 spec = inverter.run()

3.1.2 Inversion mode
3.1.2.1 Interpolation of atmospheric parameters

The atmospheric model is parametrized using nodes that contain the absolute values of
atmospheric parameters. The node positions must be specified in the optical depth scale
only. globin currently does not support the node specification on height or column mass
scale. The atmospheric parameters inferred from observations and for which the nodes
can be specified are T , vLOS, vmic, B, θ and ϕ. The ne and ntot

H are calculated assuming that
the atmosphere is in hydrostatic equilibrium (more about it in Sec. 3.1.2.2).
globin supports three different methods for the interpolation of atmospheric param-

eters between nodes: cubic spline interpolation and quadratic and cubic Bézier interpola-
tion (see for example de la Cruz Rodríguez & Piskunov 2013). The usual problem with
any interpolation routine is its behaviour at the boundaries of the interpolation domain or
in the presence of strong gradients at the node location. The behaviour of both spline and
Bézier interpolation at the boundaries is controlled by specifying the first or the second
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Figure 3.1. Comparison between different interpolation methods implemented in
globin.

derivative. The Bézier interpolation is known to be non-overshooting: it does not allow
for spurious values when two interpolation nodes are very close and differ significantly.
The Bézier interpolation thus handles strong gradients that occur in different atmospheric
parameters, characteristic of shocks in the solar atmosphere.

The user can apply the tension factor ω to the cubic spline interpolating polynomial
(Schweikert 1966, Cline 1974). The tension factor limits the polynomial overshooting,
where the original cubic polynomial is recovered for ω = 0. When the tension factor
takes large values (larger than 50), the interpolating polynomial takes the shape of a linear
function.

The comparison of different interpolating routines implemented in globin is demon-
strated in Fig. 3.1. The overshooting is evident for the cubic spline interpolation when
there is a strong gradient in the function f (x), even when a tension factor ω = 7 is ap-
plied. We see how all interpolation methods are similar for the nodes at the far right
position, which is to be expected when the nodes are well-behaved (far from strong gra-
dients). Also, the quadratic and cubic Bezier interpolation polynomials are comparable in
this example.

The interpolation of atmospheric parameters between the nodes is insufficient to con-
struct the atmospheric model and properly synthesize a spectrum. We need to extend our
atmospheric model stratification to deeper layers to get the correct continuum intensity
and extend the top layers to avoid boundary effects on the line core intensity. Both re-
quirements are related to satisfying the assumption of the semi-infinite atmosphere for
the formal solution of the polarized radiative transfer equation. Simply setting nodes
at atmospheric boundaries would not help because there is not enough information in a
spectrum to determine the atmospheric parameters at these heights accurately.
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Extending the atmospheric model to higher and deeper layers requires an extrapo-
lation of atmospheric parameters to the top and bottom boundary of the atmosphere,
respectively. By default we assume that the atmosphere spans from log τ5000 = 1 to
log τ5000 = −6 at a step size of 0.1. The user can change these values through keywords
logtau_bottom, logtau_top and logtau_step. The step size is assumed to be con-
stant throughout the atmosphere.

The atmospheric parameters are linearly extrapolated from the highest node to the top
boundary, where electron density and total hydrogen density are estimated assuming the
hydrostatic equilibrium. The same procedure is also applied from the deepest node to the
bottom boundary. The linear extrapolation assumes the gradient equals the first derivative
at the boundary nodes. The only exception is the temperature extrapolation to the bottom
boundary, for which we use the temperature gradient from the FAL-C model (Fontenla
et al. 1993) at the depth of the deepest node. The same temperature extrapolation routine
is implemented in the inversion code SNAPI. The temperature extrapolation to the higher
layers has a lower limit of 2800 K at the highest point in the atmosphere. The same
limit is also imposed on all temperature nodes. For lower temperatures, most hydrogen
atoms form H2 molecule, significantly reducing the population of neutral hydrogen atoms.
This affects the continuum opacity contributions, such as from H− ion, which produces a
significantly different continuum level compared to the observed one.

The globin code allows for a variable number of nodes to be specified for each at-
mospheric parameter, and this number can differ from parameter to parameter. There is
no exact rule on how many nodes should be chosen for each parameter, and it depends
on the type of observations set to be inverted. We expect low polarisation signals for
quiet-sun spectra, limiting the information they contain and making it difficult to infer
the depth-dependent magnetic field vector. To simplify our models and still have feasi-
ble inversions in such a case, we assume that the magnetic field vector is constant with
height. Meanwhile, we can set many nodes (say more than 7) for temperature to get the
best possible temperature stratification, which significantly impacts the spectral shape of
Stokes I. However, the large number of nodes, along with the interpolation routines, can
lead to an unrealistic oscillatory solution. Therefore, this problem can be overcome by
imposing a depth-dependent regularisation on atmospheric parameters, which allows for
increases in the number of nodes and retrieves a better representation of the stratifica-
tion of atmospheric parameters (de la Cruz Rodríguez et al. 2019). The depth-dependent
regularisation term is added to the merit function as was the case for the spatial regulari-
sation in Sec. 2.4.2. Different types of depth-dependent regularisation for the atmospheric
parameters are listed and discussed in de la Cruz Rodríguez et al. (2019). The same reg-
ularisation type is also implemented in the SNAPI code. However, globin currently only
supports spatial regularisation but not depth-dependent regularisation; the user should be
careful about how many nodes are specified for each parameter.

3.1.2.2 Hydrostatic equilibrium

The atmospheric parameters for which we specify nodes are insufficient to compute the
spectrum. We also require ntot

H and ne, which establish the ionisation balance between
different atmospheric chemical elements. RH by default considers only those elements
for which the abundance is specified in a separate file (using keyword ABUND_FILE in
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keyword.input file). The ne is then calculated from the equation of state, and globin
uses the ideal gas equation pg = (N+ne)kBT where N is the total number density of atoms
(neutral and ionized) that is related to the ntot

H as:

ntot
H =

N∑
X 10ϵX−12 , (3.1)

where the summation goes over all atomic elements X that we have in the atmosphere,
ϵX is the abundance of the chemical element X given in logarithmic scale with respect to
the hydrogen abundance (ϵH = 12) and the summation is assumed to start from hydrogen
atoms. The ideal gas equation contains two unknown and necessary parameters for spec-
tral synthesis, ne and ntot

H . We assume that the atmosphere is in hydrostatic equilibrium to
close the system and solve for them. The gas pressure balance in the atmosphere in the
optical depth scale at 5000 Å is:

dPg

dτC =
gρ
χC , (3.2)

where ρ is the mass density, χC is the continuum absorption coefficient at 5000 Å and
g is the surface gravity acceleration. Considering that our atmospheric model includes
only the photospheric and chromospheric layers, it is safe to assume that g is constant
throughout the solar atmosphere because it is very thin compared to the solar diameter.
Also, Eq. (3.2) assumes that the radiation pressure does not contribute significantly to the
pressure balance because of the comparatively low solar luminosity. Thus, the radiation
pressure is important for much brighter stars of spectral classes O, B and A (Gray 2008).
We also chose to ignore the contribution of turbulent and magnetic pressure, which would
significantly increase the complexity of inversions. The magneto-hydrostatic equilibrium
is solved in the FIRTEZ-dz inversion code (Pastor Yabar et al. 2019). It is currently the
only inversion code that infers the atmospheric parameters on a height scale. Every other
code uses either the optical depth scale or column mass density.

The atmospheric density is given by the equation:

ρ = m0

∑
X

AXnX, (3.3)

where m0 is the atomic mass unit, AX is the atomic mass of an element X, and nX is
its total number density (sum of neutral and all possible ionisation states). Under the
LTE approximation, nX is computed from the Saha equation by considering all possible
ionisation stages of the element X.

The hydrostatic equilibrium equation (HSE) is solved by integration from the top,
assuming that the atmospheric temperature is known. Given the ptop

g at the top of the
atmosphere, we calculate the initial ntot

H from the ideal gas equation assuming that ne = 0.
With the initial ntot

H , we calculate the ne to satisfy the ionisation balance based on the
specified chemical composition of the atmosphere. With the updated value for ne, we
recalculate the ntot

H with the same ptop
g and repeat the process until the relative change of

ntot
H drops below 10−2. With the updated ntot

H and ne, we calculate the ρ and χC at the top of
the atmosphere.

The ne and ntot
H in the next atmospheric depth are calculated from the HSE, and the ne

and ntot
H from the previous depth point, or to be exact from the ρ and χC since they appear

65



3 globin: spectropolarimetric inversion code for the spatially coupled inference of
atomic line parameters

in Eq. (3.2). The HSE integration is then performed on the logarithmic optical depth scale
using the trapezoid integration method:

β1 =
ρk−1

χc
k−1

τk−1

β2 =
ρk

χc
k

τk

pg,k = pg,k−1 + ln(10) · g ·
β2 + β1

2
· log

(
τk

τk−1

)
,

(3.4)

until the relative change of pg,k is smaller than 10−2. The k index indicates the depth
position and the atmospheric parameters in globin are stratified from the top of the at-
mosphere (k = 0) to the deepest layers (k = Nd). Integrating the HSE on the logarithmic
optical depth scale increases the stability of the iterative method, and only a few iteration
steps (2-3) are needed for convergence (Gray 2008).

3.1.2.3 Parameters response functions

globin uses the central difference numerical scheme to compute the response functions
of parameters in the nodes. The perturbations are applied to the node values, which re-
quire us to re-interpolate and re-extrapolate atmospheric parameters to solve the polarized
radiative transfer equation. The magnitude of the perturbation applied to each inversion
parameter is given in Tab. 3.1. These perturbation values are chosen to be small enough
to approximate the response functions as a first-order perturbation of the Stokes profiles
but large enough to produce differences in the spectra that are significantly larger than
any numerical uncertainty. With much larger perturbations of the physical parameters,
we would reach a non-linear perturbation of the Stokes profiles due to the non-linearity
of the polarized radiative transfer equation.

Table 3.1. The parameter perturbations δp used for computing numerical response
functions.

parameter perturbation
T 1 K

vLOS 1 m/s
vmic 1 m/s
B 1 G
θ 0.01 rad
ϕ 0.01 rad

log(g f ) 0.001
∆λ 1 mÅ

The values of the response functions for different physical parameters span several
orders of magnitude (see Fig. 2.1), which impacts the convergence properties of the LM
algorithm. To improve the convergence of the inversion, Marquardt (1963) suggested
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scaling the k–th column of the Jacobian matrix (in our case, the response functions to the
k–th inversion parameter) with:

sk =

√√
N∑

i=1

J2
i,k, (3.5)

where the index i goes over all data points (in our case, wavelengths for all four Stokes
components). Dividing the computed response function with this scaling parameter yields
a dimensionless response function. The Hessian matrix becomes a matrix of parameter
correlation coefficients (diagonal elements equal 1 + λM). The parameter correction ∆pk

can be converted back to proper units by multiplying it with the sk.
The response functions for atomic parameters are also computed similarly to those

for the atmospheric parameters using the central difference numerical scheme. However,
their computation using the perturbation method is much simpler than the atmospheric
parameters because the atomic parameters are height-independent. In the case of the
log(g f ) parameter, the perturbations of the absorption and emission coefficients are sim-
ply δχλ = χL

λ · ln(10) · δ log(g f ) and δηλ = ηL
λ · ln(10) · δ log(g f ). In future versions

of globin, we intend to implement the perturbation method for computing the response
functions of atomic line parameters, which should decrease the inversion time.

3.2 Comparison of the pixel-by-pixel and the coupled meth-
ods for atomic line parameters inference

Material from this section is presented in the paper Vukadinović et al. (2023) that is
submitted to A&A journal. I have conducted all the tests, compiled all the figures and
wrote the manuscript draft that has been corrected by all co-authors.

To test the capabilities of the coupled method in comparison to the pixel-by-pixel
method, we analyse synthetic Stokes profiles sampling different features. We extract at-
mospheres of an umbra, penumbra, granule and intergranular lane from a snapshot of a
3D MHD simulation containing a sunspot (Rempel 2012, see the continuum image in
Fig. 3.2d) simulated using the MURaM code (Vögler et al. 2005). This selection guar-
antees a diverse sample of temperature, line of sight (LOS) velocity and magnetic field
strength stratifications (Fig. 3.2a-c) resulting in very different Stokes profiles (Fig. 3.2e-
h). This diversity leads to line profiles, especially of weaker lines, that are prominent in
some features but not visible in others. In particular, the response of lines to a change
in the atomic parameters is different for the different atmospheres, naturally reducing the
cross-talk between atomic and atmospheric parameters in the coupled method.

We will test the applicability of the pixel-by-pixel method and the coupled method to
determine the atomic parameters log(g f ) and to correct for possible errors in the central
wavelength (∆λ) of spectral lines in the 4015–4017 Å range, containing several blended
lines. This spectral region was chosen because it is within the range of the Hamburg atlas
spectrum (Neckel & Labs 1984), has many blended spectral lines, and is accessible to the
SUSI instrument.

Spectral line information for the considered spectral region is taken from the Kurucz
line list (Kurucz & Bell 1995). Many lines in the Kurucz line list are relatively weak
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Table 3.2. Atomic line parameters from 4015–4017 Å range. The columns represent
line number in the spectral region used for analysis, chemical element, central wave-
length λ0, energy of lower level (Ei), blending factor b, effective Landé factor (geff),
element abundance α and log(g f )0 parameter. All atomic data are from Kurucz’s
database, except for the Landé factor and abundances. The effective Landé factors
are taken from the VALD database, where only line 10 is computed assuming LS
coupling. aGrevesse & Anders (1991) bAsplund et al. (2000) cAnders & Grevesse
(1989).

No element λ0 [Å] Ei [eV] b [%] geff α log(g f )0

1 Fe I 4015.139 4.1631 4.3 0.666 7.44b -2.172
2 Co I 4015.219 2.7849 33.3 0.484 4.92a -1.806
3 Ti I 4015.373 2.0850 20.7 0.515 4.99a -0.084
4 V I 4015.398 2.0618 98.4 0.995 4.00a -0.857
5 Fe I 4015.465 4.0434 33.1 1.407 7.44b -0.781
6 Ni II 4015.474 3.9028 99.4 0.619 6.25a -2.419
7 Nd II 4015.545 1.6766 94.1 0.886 1.50c 0.080
8 Fe I 4015.605 4.0434 5.1 1.394 7.44b -0.515
9 Ce II 4015.875 1.0083 21.7 0.881 1.55c -0.087

10 Fe I 4015.986 4.1235 3.8 2.000 7.44b -1.928
11 Ni I 4016.068 3.9735 20.1 1.388 6.25a -1.870
12 Ti I 4016.274 2.0658 5.8 1.762 4.99a -0.714
13 Fe I 4016.419 3.1775 0.1 0.682 7.44b -1.600
14 Fe I 4016.541 2.6399 5.5 1.197 7.44b -3.513
15 Mn I 4016.658 4.1926 53.5 0.035 5.39a -1.160
16 Co II 4016.685 3.0177 41.6 1.293 4.92a -2.905
17 Fe I 4016.792 4.1195 65.9 2.002 7.44b -2.576
18 Co I 4016.793 3.5124 39.5 1.213 4.92a -0.547

and are expected to have an insignificant effect on the spectrum. Including all of them
will only extend the computing time. We consider only those spectral lines with a line
core depth of at least 1% of the local continuum intensity. We found 18 such lines in
this region. Their parameters are given in Tab. 3.2. The blending factor for each line is
estimated using the method in Laverick et al. (2017). This factor quantifies the extent of
overlap between a given absorption line’s core and its neighbouring lines. The smaller the
blending factor is, the smaller the amount of overlap.

The Stokes profiles are computed at disk centre (µ = 1) under the LTE approxima-
tion using globin. The computed spectra are normalized using the continuum intensity
computed from the HSRA atmospheric model3 (Gingerich et al. 1971). The differences
between the coupled and pixel-by-pixel methods are tested under ideal conditions by dis-
regarding observational effects such as stray light, the finite resolving power of spectro-
graphs and noise.

In the inversion, we fitted for the height stratification of the atmospheric parameters:

3Any other mean atmospheric model, such as FAL-C or HOLMUL, could be used to compute the
continuum intensity.
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Figure 3.2. Panels a-c: Stratifications of the temperature (a), LOS velocity (b), and
magnetic field strength (c) from one pixel for each atmospheric feature taken from
the sample of extracted atmospheres. Panel d: the continuum intensity from the
MHD cube at 4015 Å. Yellow dots represent selected pixels of the umbra, penumbra,
granule and intergranular lanes used for testing the coupled method. Panels e-h:
Stokes parameters in the 4015–4017 Å spectral range from the atmospheres displayed
in panels a-c. Wavelengths are given with respect to 4016 Å. For easier comparison,
the Stokes profiles are normalized to the local continuum intensity Ic and the Stokes
I/Ic profiles from different features are shifted vertically.

temperature, LOS velocity, and magnetic field vector. The temperature is inferred using
four nodes placed at optical depth values of log τ = (−2.5,−1.5,−0.5, 0.4) while the re-
maining atmospheric parameters are inferred at three nodes, log τ = (−2.2,−1.1, 0). Here
and in the rest of the paper, the optical depth scale is computed at the reference wave-
length of 5000 Å. The initial values for the atmospheric parameters are uniform across all
pixels.

We considered log(g f ) and the central wavelength shift ∆λ of all lines as free pa-
rameters, except for line 13, whose parameters were kept fixed during inversions in both
the pixel-to-pixel method and the coupled method. Line 13 is the strongest and the least
blended within the spectral range. Fixing the atomic parameters of one spectral line is nec-
essary to infer both the absolute wavelength and LOS velocity accurately. Additionally,
it improves the inference reliability of atomic parameters for other lines in the spectral
region.
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Initial atomic parameter values are randomized with a Gaussian distribution around
the exact values (i.e., the values used for computing the synthetic spectra from the simu-
lations) with a standard deviation of 0.2 for log(g f ) and 5 mÅ for the ∆λ parameter. We
limit the allowed ranges for log(g f ) and ∆λ to [−2.0, 1.5] and [−30, 22] mÅ with respect
to the exact values, respectively. These limits are in the range of the expected uncertainties
in the atomic databases and can be independently adjusted for each spectral line.

To compare results from the coupled method with the pixel-by-pixel method, we per-
formed the inversions in three different modes:

Mode 1: Only atmospheric parameters are inverted for each pixel individually. The
atomic parameters are fixed to the values used to compute the reference spectra.
This inversion allows us to retrieve the best possible stratification of atmospheric
parameters with the given node settings and initial parameter values since all atomic
parameters are assumed to be accurately known.

Mode 2: For each pixel individually, atomic and atmospheric parameters are in-
ferred (pixel-by-pixel method). Here, the inversion retrieves different atomic pa-
rameters for every spectral line and at every pixel.

Mode 3: Atmospheric parameters vary between pixels, while atomic parameters
are inverted globally (i.e. the coupled method). Only one set of atomic parameters
(log(g f ) and ∆λ) is obtained per spectral line.

Mode 1 inversion results are used as a reference to which the inversion results from
mode 2 and 3 are compared. Any significant deviations in the retrieved atmospheric pa-
rameters in mode 2 and 3 compared to the retrieved atmospheric parameters in mode 1 can
likely be attributed to the poor atomic parameters in these two modes, resulting in poor
convergence.

All three modes were run with the same initial values of the atmospheric parameters
and the same initial atomic parameters in mode 2 and 3. For mode 2 and mode 3 inver-
sions, we observed that the LM algorithm converges in more pixels when a large value of
the Marquardt parameter (λM = 10) is used at the start. This leads to small changes in the
free parameters at the start of the inversion, thus improving the convergence properties of
the algorithm.

The χ2 values for all selected atmospheres (referred to as pixels from now on) from
all three modes are displayed in Fig. 3.3. For a direct comparison, χ2 is calculated as:

χ2 =
1
N

N∑
i=1

w2
i (Oi − Si)2 , (3.6)

where N is the number of wavelengths (running over each Stokes parameter), wi is the
weighting of each Stokes component and each wavelength, O is a synthetic Stokes spec-
trum from selected pixels and S is an inverted Stokes spectrum. Both O and S are nor-
malized to the local Stokes I continuum value. The exact weights were used in all three
modes.

Note that pixels in Fig. 3.3 are not spatially connected (yellow dots in Fig. 3.2d).
Inversion mode 1 shows a low χ2 value for pixels within the granules, whereas the umbral
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Figure 3.3. χ2 values for all three modes on a logarithmic scale. The total χ2 value,
the sum of the χ2 values from all pixels, is displayed at the top of each panel. Pixels
marked with a red cross in panels of mode 2 and 3 correspond to pixels with a lower
χ2 than the χ2 value in mode 1.

and penumbral pixels show higher values. The convergence to lower χ2 in these pixels
could be improved by changing the initial parameters or the LM algorithm’s parameters.
However, this does not guarantee that the χ2 value in other pixels would also improve
simultaneously.

The inversion mode 2 and 3 show a very good fit to the Stokes spectra, comparable to
mode 1, with slight differences in individual pixels. Those pixels in mode 2 and 3 with χ2

value lower than in mode 1 are marked with red crosses in Fig. 3.3. With a larger number
of inversion parameters, the inversion algorithm has much more freedom to find the best
match of spectra, thus lowering the χ2 hypersurface.

The quality of the inferred atmospheric parameters for all three inversion modes is
quantified using the root-mean-square-deviation (RMSD). The parameter’s RMSD (PRMSD)
is defined as the root-mean-square difference between the retrieved parameter stratifica-
tion (Pinv) and the original parameter stratification in the MHD cube (PMHD) at all depths
between the highest and lowest nodes on the interpolated log τ grid:

PRMSD =

√√
1

Nd

Nd∑
i=1

(
Pinvi − PMHDi

)2, (3.7)

where Nd is the number of fine grid points in the atmosphere between the lowest and the
highest node of the parameter P. The extrapolated depth points above the highest and
below the deepest node were excluded from the computation of the PRMSD to focus on the
region of the atmospheres where the lines are formed.

The PRMSD values for the temperature, LOS velocity and magnetic field strength for
each pixel are displayed in Fig. 3.4. The first column shows the PRMSD for mode 1 while
the last two columns display the differences in PRMSD for mode 2 and 3 relative to mode 1
(∆PRMSD value). Negative differences indicate a better retrieval of atmospheric parameters
in mode 2 and 3 compared to the atmospheric parameters retrieved in mode 1. Overall,
mode 3 shows a better retrieval of atmospheric parameters (despite the fact that mode 3
has fewer free parameters!) compared to mode 2 and the values retrieved are comparable
to mode 1 inversion results.

In the case of granular and intergranular pixels in mode 2, the achieved fit quality
is comparable to mode 1, but the temperature stratification differs significantly from the

71



3 globin: spectropolarimetric inversion code for the spatially coupled inference of
atomic line parameters

umbra

penumbra

granule

intergranule

Mode 1 Mode 2 - Mode 1 Mode 3 - Mode 1

umbra

penumbra

granule

intergranule

umbra

penumbra

granule

intergranule

0

100

200

300

T
R

M
S
D

[K
]

0

200

400

600

800

0

200

400

600

800

∆
T

R
M

S
D

[K
]

0.0

0.5

1.0

1.5

2.0

v L
O

S
,R

M
S
D

[k
m
/s

]

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

∆
v L

O
S
,R

M
S
D

[k
m
/s

]

0

100

200

300

400

B
R

M
S
D

[G
]

−300

0

300

600

900

−300

0

300

600

900

∆
B

R
M

S
D

[G
]

Figure 3.4. The root-mean-square deviation of the inverted atmospheric parameters
calculated from the highest to the lowest nodes in each inversion mode. The first
column shows the PRMSD for mode 1, while the other two columns display differences
in PRMSD from mode 2 and mode 3 from mode 1. The PRMSD measures are given for
temperature (first row), LOS velocity (second row) and the magnetic field strength
(third row).

reference case (mode 1). The temperature offset can be compensated for by adjusting
the log(g f ) value (and to a minor extent also any other inversion parameter), resulting
in large errors in the inversion parameters but still maintaining a satisfactory fit to the
Stokes profiles or even producing a better one. This is possible because the four-node
representation of the temperature used in the inversions cannot accurately represent the
more complex height stratification in the MHD atmospheres. The comparison of retrieved
parameter stratifications in all three modes to the MHD stratification for a granule atmo-
sphere is displayed in Fig. 3.5. This figure exemplifies the highly complex stratifications
typically found in MHD simulations. The corresponding synthetic Stokes spectra and the
best fit for the three modes are displayed in Fig. 3.6, where mode 3 shows the best fit to
the observed spectra.

To illustrate the quality of the temperature and log(g f ) retrieval for mode 2 and 3
inversions, we present scatter plots of the ∆TRMSD values for every atmosphere and the
difference between the inverted and exact values of the log(g f ) parameter for every line in
Fig. 3.7. The large scatter of retrieved log(g f ) values in mode 2 is evident. There are two
reasons for this behaviour. The first one is a consequence of the blending of spectral lines.
In the case of line blends, the mode 2 inversions cannot differentiate the contributions of
each blended line to the final profile. This example illustrates the demerits of assuming a
statistically averaged value of log(g f ) from all the pixels to be the right one for the given
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Figure 3.5. Stratifications of various atmospheric parameters for a granule atmo-
sphere. Curves with different colours represent the stratification of the original MHD
simulation and different inversion modes (see legend in the top-left panel). Circles
represent the node positions. The grey line in the azimuth panel shows the azimuth
in MHD simulation shifted by 180◦.
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0.0

0.2

∆
V

Figure 3.6. The comparison of Stokes spectra in all inversion modes for a granule
atmosphere whose atmospheric stratification is displayed in Fig. 3.5.

spectral line in the pixel-by-pixel method. The second possible explanation could be
because of the degeneracy in mode 2 between the temperature and log(g f ) retrieval: the
log(g f ) values for all the spectral lines can be freely modified along with the atmospheric
parameters in every pixel individually and thus relaxes the constraints on the temperature.
The magnitude of this degeneracy on the retrieved inversion parameters is unclear from
this test since all the lines are somewhat blended. However, using the same inversion
setup, mode 3 manages to overcome these difficulties and retrieve log(g f ) values very
close to the exact values for all spectral lines and stratification of atmospheric parameters
in each pixel.

The comparison between retrieved log(g f )inv in mode 2 and 3 and the log(g f )0 is
shown in Fig. 3.8. The mode 2 results represent the mean value from the log(g f ) values
of all considered pixels. This improves the statistical significance for the mode 2 results
and allows for a fair comparison with the mode 3 results, which always considers all the
pixels. A preliminary analysis shows that an insignificant improvement in the results from
mode 2 is achieved by increasing the number of pixels. Also, the optimal number of pixels
required for each mode will depend on the number of lines for which the atomic param-
eters are to be determined and the amount of line blending. The influence of the chosen
number of pixels on the results from both modes, 2 and 3, will be investigated in detail in
a follow-up study.

As a measure of the quality of the log(g f ) inference for mode 2, we use the mean and
the standard error of the log(g f )inv - log(g f )0. The mode 2 inversion manages to retrieve
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Figure 3.7. Scatter plots of the log(g f )inv-log(g f )0 (x-axis) versus ∆TRMSD values
(y-axis) for mode 2 (in blue) and mode 3 (in orange). Each subplot corresponds to
one spectral line with the line number from Tab. 3.2 given in the lower-right corner.
The values from each pixel are represented with different symbols: circle (umbra),
square (penumbra), plus (granule) and cross (intergranule). Horizontal and vertical
lines mark the average of ∆TRMSD and log(g f )inv-log(g f )0 in each inversion mode,
respectively. The values in the upper left corner of each panel are the mean and
standard error of ∆λ in mode 2, and in the upper right corner is the inferred ∆λ in
mode 3 in units of mÅ. The standard error of ∆λ is zero in mode 3 since it retrieves a
unique global value.

the log(g f ) values to an accuracy of 0.032 of the exact value, while mode 3 performs
better, with an accuracy of only 0.009. The standard error of ∆λ is below 1 mÅ for both
modes.

Spectral line 4 has the largest standard error of log(g f ) in mode 2 and the mean
log(g f ) close to the expected value (Fig. 3.8, see also Fig. 3.7). This is likely a result
of the severe blending with line 3: changes in log(g f ) of line 4 will not produce a signifi-
cant signature in the spectrum, which hinders the inversion in retrieving a reliable value.
A similar situation also holds for line 7, which forms a blend with line 8. Fig. 3.7 shows
that the uncertainty of the central wavelength of the spectral line can have a significant
impact on the retrieval of the exact log(g f ) value, seen especially in line 4.

The problem in retrieving atomic parameters caused by the blending of spectral lines
is illustrated by comparing the results for lines 15 and 16. Fig. 3.8 shows that line 15 is
weaker while line 16 is stronger than expected in mode 2. However, line 15 also shifts
to shorter wavelengths, further away from line 16. R The inversion algorithm decreases
the log(g f ) of line 15 and increases it for line 16 to reproduce the synthetic profile. This
interplay between the log(g f ) values of these lines is visible in Fig. 3.7. This problem
is alleviated in mode 3, where no such significant difference in retrieved log(g f ) or ∆λ
is observed. A similar explanation for the strongly blended pair of lines 17 and 18 also
holds. This result clearly shows the benefits of using the coupled method to retrieve
reliable atomic parameters compared to the pixel-by-pixel method for blended lines.

The coupled method retrieved atmospheric parameters, log(g f ) and ∆λ with high pre-
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cision, whereas the pixel-by-pixel method shows a significant deviation in the temperature
and log(g f ) from the reference values. This deviation is due to the blending of spectral
lines and, to some extent, to the cross-talk between inversion parameters (mainly between
temperature and log(g f ) and log(g f ) and ∆λ). The pixel-by-pixel method cannot decou-
ple line contributions to blended profiles, thus inferring erroneous parameter values.

The coupled method can separate contributions of blended line profiles and retrieve
accurate log(g f ) values for every line, including heavily blended lines. This result is
significant for analysing many-line spectropolarimetric observations, such as the near ul-
traviolet spectra expected from the SUSI instrument of the Sunrise iii observatory. The
high density of lines in this spectral region results in line blending. Additionally, many of
them have considerable uncertainties in the knowledge of the atomic parameters.
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Figure 3.8. Comparison of the atomic parameters log(g f ) and ∆λ for mode 2 and 3
inversions. Top panel: The y-axis shows the difference between inferred log(g f )inv
and exact log(g f )0 values where on the x-axis we plotted the line core depth. The
averaged values in mode 2 are marked in circles, and the values from mode 3 are in
triangles. Markers are coloured based on the ∆λ parameter. The top of the panel lists
mean ∆ and standard error σ of log(g f )inv - log(g f )0 for each mode. The error bars
are displayed only for mode 2, marking 1σ level. Mode 3 retrieves a unique global
value for each line, and we do not have any measure of error in this case. Bottom
panel: The comparison of log(g f )inv-log(g f )0 with the line blending factor listed in
Tab. 3.2. The markers’ shape and colour have the same meaning as in the top panel.
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4 Applications of the coupled method

This section presents preliminary results from a test phase of the globin code. During
these tests, we aimed to verify the reliability of the coupled method and optimize for
the best approach which would provide reliable atomic parameters. Some new ideas for
applying the coupled method also came into perspective, which are also discussed here.

4.1 The log(g f ) parameter of Fe I 6301.5 Å and 6302.5 Å
lines

The first test of the globin code, as well as of the coupled method on spatially resolved
observations, was conducted on a dataset recorded by the Hinode spacecraft (Kosugi et al.
2007) using the onboard spectropolarimeter (SP; Ichimoto et al. 2008). The Hinode/SP
instrument records the Stokes profiles in two Fe I lines at 6301.5 Å and 6302.5 Å with a
spectral sampling of 21.5 mÅ. The analyzed data were recorded close to the disc centre
with the centre of the scan at (−28.36′′, 7.34′′) on the 12th of September 2013 from 10:26
to 10:37 UT in fast mode with a spatial sampling of 0.32′′. We selected a region of 20×20
pixels from this dataset with the lowest total polarisation signal and a size of ∼ 4.6 Mm
(Fig. 4.1).

The atomic parameters of the observed two iron lines are given in Tab. 4.1. The
log(g f ) values listed in this table are used as initial values for the inversions. As a first
assumption, we presume that both lines can be modelled correctly in LTE even though
Smitha et al. (2020) showed that line scattering and UV-overionisation of iron signifi-
cantly influence the line absorption coefficient and that NLTE solution is preferred.

Table 4.1. Atomic parameters of the two iron lines observed by the Hinode/SP, taken
from the VALD database. Listed from left to right are the line central wavelength,
the energy of the lower transition level, log(g f ) and the effective Landé factor. We
assume a value of 7.44 for the iron abundance (Asplund et al. 2000).

λ [Å] Ei [eV] log(g f ) geff
6301.5002 3.6536 -0.718 1.67
6302.4936 3.6863 -0.968 2.49

For the inversion of Hinode/SP observations, we chose to infer the atmospheric pa-
rameters and the log(g f ) parameter, assuming that the central wavelengths of the lines are
known. The atmospheric model is parametrized using three nodes at log τ = (−2.0,−0.8, 0.0)
for temperature, LOS velocity, and magnetic field strength, inclination and azimuth. Even
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Figure 4.1. Left panel: The continuum image of the selected 20 × 20-pixel region
from the quiet-sun disc centre observations by the Hinode/SP instrument on the 12th
of September 2013. Right panel: The spatially averaged Stokes I spectrum from the
region in the left panel.

though the observed region is expected to have a weak magnetic field, we opted to infer
the depth-dependent magnetic field vector. The Stokes profiles measured in some pixels
show polarisation signals above the noise level, and disregarding the magnetic field and
its gradient will hinder the inversion algorithm from finding a good fit. Also, the magnetic
field can still affect the line profiles in Stokes I through the Zeeman effect.

Here, we decided to disregard the micro-turbulent velocity because it causes a poorer
fit quality. A similar behaviour was also found to be true when the same data were ana-
lyzed using the SPINOR code to which we have benchmarked globin’s performance. To
carry out a meaningful comparison of inversion results from SPINOR and globin, we had
to ensure that both codes use the same node positions, interpolation routine, atomic pa-
rameters and the continuum intensity used to normalize the spectra. Therefore, we opted
for cubic spline interpolation, also implemented in SPINOR, with the tension factor of
ω = 5. In this benchmark test, both codes use the pixel-by-pixel method to optimize for
the inversion parameters, assuming constant atomic parameters given in Tab. 4.1. From
the comparison of inferred atmospheres in Fig. 4.2, we conclude that both codes show a
comparable spatial distribution of inversion parameters in each node. This indicates that
the physics implemented in globin is correct and behaves as expected. Even though the
spatial regularisation is implemented in globin, we are not using it in these inversions be-
cause it is unavailable in SPINOR and could cause larger discrepancies between retrieved
atmospheres from these two codes.

Next, we apply the coupled method to the same dataset to infer the log(g f ) values
of both lines. The log(g f ) parameter of the 6301.5 Å line has been measured in the
laboratory using the emission measure technique with a relative error of 7% (Bard et al.
1991). Even though it is experimentally measured, we assumed that it is unknown and
tested whether the coupled method can reliably retrieve this value along with the log(g f )
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Figure 4.2. Comparison of inferred values for temperature (first two columns), LOS
velocity (third and fourth columns) and magnetic field strength (last two columns)
from SPINOR and globin. Each row represents the spatial distribution of inferred
values at a given node.

parameter of 6302.5 Å line. Therefore, we have performed three different inversions:

I1: both lines are assumed to have free log(g f )

I2: only 6301.5 Å line has a free log(g f ), while the other line has a fixed one

I3: only 6302.5 Å line has a free log(g f ), while the other line has a fixed one

In each of these inversions, we also inferred the atmospheric parameters.
In Fig. 4.3, we show the comparison between inferred atmospheric parameters from

SPINOR that has fixed atomic parameters and those from globin for the I1 inversion run
using the coupled method. The magnetic field strength and LOS velocity are comparable
to results from SPINOR, indicating that the log(g f ) parameter has a low cross-talk with
these atmospheric parameters and, therefore, an insignificant influence on their retrieval.
However, the panels for temperature indicate a more significant deviation from what is
retrieved using SPINOR. This shows the cross-talk between the temperature and log(g f )
parameters, primarily to the temperature around the formation height of the observed lines
(node at log τ = −0.8). A very similar result is obtained for inversion run I2, while the
retrieved temperature at log τ = −0.8 for inversion run I3 is lower compared to the result
from SPINOR.

The retrieved values of the log(g f ) parameter obtained from the three inversions are
presented in Tab. 4.2. These values are somewhat distant from the values in Tab. 4.1.
However, the difference between retrieved log(g f ) values is very similar in all three in-
versions. This indicates that the coupled method tends to keep the difference of log(g f )
values fixed throughout the inversion to reproduce the observed line profiles. Inverting
the observations of multi-line spectra and assuming that all lines have unknown log(g f ),
we can retrieve correct relative log(g f ) for each line, but not the absolute values. In the
inversion example from Sec. 3.2, we had to fix the log(g f ) parameter of one spectral line.
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Figure 4.3. Similar comparison as in Fig. 4.2 between SPINOR and globin for the
I1 inversion run. All colour maps have the same scaling as in Fig. 4.2.

Table 4.2. The retrieved log(g f ) values of Fe I 6301.5 Å and 6302.5 Å lines using the
coupled method. The ∆ parameter is a difference in log(g f ) values of the two lines.

run log(g f )6301.5 log(g f )6302.5 ∆

I1 -0.509 -0.980 0.471
I2 -0.493 -0.968 0.475
I3 -0.718 -1.196 0.478

We must be cautious in interpreting these results because we do not have an absolute
truth to which we can compare the atmospheric and/or log(g f ) parameters. The result
from Fig. 4.3 indicates that we can trust the inferred LOS velocity and magnetic field
strength at all depths even with significantly different log(g f ) values for the two iron
lines. The same trust can also be given, to some degree, to the temperature in the highest
and deepest nodes but not to the temperature at the formation height of these lines (middle
node).

Lastly, but very important for future analysis of Hinode/SP observations, this result
indicates that log(g f ) value for 6302.5 Å line listed in the VALD database is poorly de-
termined. Trusting the experimentally estimated log(g f ) value for 6301.5 Å line implies
that the log(g f ) value for 6302.5 Å line should be around −1.196. From fitting the cen-
tral depth of a line in the spatially averaged spectrum of the quiet-sun region, Thevenin
(1990) has determined that log(g f ) of 6302.5 line is −1.16. The same value is determined
by Socas-Navarro (2011) fitting the whole line profile from the same spectrum. These
results support the retrieved log(g f ) value for 6302.5 Å line that we obtain by applying
the coupled method to the Hinode spectra from the quiet-sun region.

We cannot firmly conclude this result for now, and we aim to further explore the
inference of log(g f ) values for these two lines, which are very important and used very
often for studying the solar atmosphere. Since these two lines show NLTE effects that are
not negligible (Smitha et al. 2020), we should also aim to infer their log(g f ) values by
modelling them in NLTE.
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4.2 Finding the optimal strategy for inferring the log(g f )
parameter

The coupled method does not require spatially coherent pixels to infer the atomic param-
eters. This gives us the freedom to select pixels from an observed field of view which
sample different solar features and whose Stokes profiles would be reproducible using the
chosen node parametrisation of the atmospheric model. The observed line profiles show
the underlying complexity of atmospheric parameter stratification. For example, strong
gradients in the line of sight velocity will produce very asymmetric profiles. Flexibility
to select pixels is a favourable option since the coupled method simultaneously fits all ob-
served spectra, and having at least one pixel with a spectrum that is irreproducible would
hinder a reliable retrieval of all inversion parameters.

To assess the optimal strategy for inferring the log(g f ) parameter of many lines in the
observed spectra, we select pixels that represent umbra, penumbra and quiet-sun region
from a 3D MHD atmospheric model of a sunspot (Rempel 2012, the same MHD model
was also used in Sec. 3.2). We constructed samples of 40, 80, 200, 1000 and 2000 pixels
from this MHD model, retaining the same fraction of umbra (8%), penumbra (14%) and
quiet-sun pixels (78%). The selected pixels in the sample totalling 1000 atmospheres are
shown in Fig. 4.4. Pixels are selected randomly on a uniform polar grid without selecting
a given pixel more than once in a given sample. However, there could be overlaps in
pixels between different samples.

We synthesised the spectra for each constructed sample over the same spectral re-
gion as in Sec. 3.2. These synthetic observations are inverted using the same setup as in
Sec. 3.2, inferring the atmospheric parameters and the log(g f ) and ∆λ parameters of each
line. Again, line 13 from this spectral region has its atomic parameters fixed to the value
used to synthesise these spectra. The accuracy of the retrieved log(g f ) values for all the
lines, using either the pixel-by-pixel or the coupled method, is estimated with the stan-
dard deviation of log(g f )inv− log(g f )0 weighted by the line core depth measured from the
FAL-C atmosphere spectrum. Using this type of weighting, a higher importance is given
to stronger lines, which are often less blended than weaker lines.

The weighted standard deviation σlog(g f ) for each sample is shown in Fig. 4.5. The
log(g f ) value retrieved for each spectral line by the pixel-by-pixel method is averaged
over 25% of all pixels with the lowest χ2 value. The standard deviation of σlog(g f ) for
samples containing from 40 to 200 pixels is estimated using the bootstrap method on the
results from the sample with 1000 pixels. The same figure shows the results from two
different inversions using the coupled method. In the first one, spectra from all the pixels
in a sample are inverted using the coupled method. We select 50% of pixels from this
inversion with the lowest χ2 (half-sample). We then repeat the inversion of the half-sample
using the same initial conditions as we used for the whole sample (the same ones are also
used for the pixel-by-pixel inversion). The results from this inversion are displayed with
orange squares in Fig. 4.5. In the second inversion using the coupled method, we select
again 50% of pixels with the lowest χ2 from the half-sample, which now represent only
25% of the original sample size (quarter-sample). The results from this inversion are
displayed with red squares in Fig. 4.5.

The samples’ results in Fig. 4.5 show how the pixel-by-pixel method struggles to re-
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umbra penumbra quiet-sun

Figure 4.4. The selected pixels from the employed MHD simulation represent the
umbra (blue dots), penumbra (orange dots) and quiet-sun (red dots) for the sample
with 1000 pixels.

trieve the log(g f ) parameter as reliably as in the coupled method. This indicates the
inability of the pixel-by-pixel method to retrieve simultaneously the expected values for
temperature and log(g f ) parameter. Because of the averaging of log(g f ) values over
many pixels in the pixel-by-pixel method, one expects that increasing the number of pix-
els in a sample and selecting the very best ones may lead to a smaller σlog(g f ). This seems
to be a poor assumption, most probably because the line blending hinders the LM algo-
rithm from optimizing for log(g f ) of these very weak and blended lines pushing σlog(g f )

to higher values. On the other hand, the coupled method shows a steady decrease and
saturation of σlog(g f ) with an increasing number of pixels in a sample. The inversion of
half-samples and quarter-samples allows the coupled method to reproduce the observed
Stokes profiles better, lowering the χ2 value and allowing weaker and more blended lines
to impact the final χ2. This selection of pixels improves the accuracy of retrieved log(g f )
values for weak and blended lines in a spectrum more than for strong and isolated ones.
However, further testing is necessary for a better and more robust comparison, which re-
quires uncertainty estimates for the retrieved log(g f ) values. This will be investigated in
the follow-up study.
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Figure 4.5. The weighted standard deviation of log(g f )inv− log(g f )0 for each sample
of atmospheres. Blue circles correspond to results from the pixel-by-pixel method,
while the orange and red squares correspond to results from the coupled method
applied on a half-sample and quarter-sample.

The analyzed spectra are ideal, and the impact of observational noise on the results
has not been considered for now. Adding the noise to the synthetic spectra is expected to
diminish the contribution of weak lines to the χ2 and completely hinder the inference of
their log(g f ) parameter. However, it still needs to be tested as to how significant the noise
will impact inferring the correct log(g f ) parameter for lines that are significantly above
the noise level and/or blended.

Further on, we still have to investigate the minimum number of atmospheres needed
to retrieve accurate log(g f ) values for many lines using the coupled method and check
how this number depends on line blending. The half-samples and the quarter-samples
contain pixels representing the umbra, penumbra and quiet-sun region whose fraction
differs from the one in the full sample. We still have to explore if inverting the spectra
from a particular solar feature introduces biases in inferred log(g f ) values compared to
inverting diverse spectra observed from different solar features.

4.3 Inference of the opacity fudge coefficients

The motivation to tackle the problem of poorly known atomic parameters comes from
the work by Riethmüller & Solanki (2019), who showed a large discrepancy between
the spatially averaged observed spectrum and the average synthetic spectrum from a 3D
atmosphere in the NUV. Sources of this discrepancy could come from poor atomic line
parameters, missing continuum opacity and significant uncertainties in adopted collisional
coefficients of spectral lines. Therefore, we must first understand and model these sources
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appropriately to retrieve reliable atmospheric parameters from NUV spectra.

We have already shown the benefits of using the coupled method for retrieving the
atomic line parameters (log(g f ) and ∆λ) from observed spectra. Trusting that ABO the-
ory correctly models the collisional broadening of lines, in this section, we discuss the
possibility of determining the missing UV continuum opacity from observed spectra. The
computed UV continuum intensity is known to have a higher continuum level than the
observed one, indicating a missing source of opacity in our calculations. This could be
coming from the unaccounted millions of very weak unresolved absorption lines that form
a thick line haze in the UV, thus reducing the level of the observed continuum. These lines
originate from higher excitation levels of metals that mimic continuum opacity (line haze;
Rutten 2019). Other sources of missing UV opacity come from poor modelling of ioni-
sation edges of many elements located in the UV and not accounting for NLTE electron
number density in computing the continuum opacity (Rutten 2021). The physical nature
of the missing UV continuum opacity has yet to be fully understood.

There are multiple ways to model the missing UV opacity. One way is to include
all the lines from the Kurucz line list, which would make spectral synthesis very com-
putationally demanding. The approximate solution to this problem is to bin the opacity
in these lines and apply their contribution in wavelength bands. The constructed binned
opacity is known as the opacity distribution function (e.g. Hubeny & Mihalas 2014) and
it is used to construct line-blanketed stellar atmospheric models (e.g. Kurucz 1979). An-
other method for approximating the contribution of millions of spectral lines in modelling
the line-blanketed atmospheres is developed in Busá et al. (2001).

An alternative way to model the missing UV opacity is to multiply the continuum
opacity with wavelength-dependent coefficients until a satisfactory fit to the observed
continuum is achieved. These coefficients are known as opacity fudge (OF) coefficients
and are currently determined only for the quiet-sun atmosphere by matching the synthetic
spectrum from the FAL-C atmospheric model to the spatially averaged quiet-sun disc
centre spectrum (Bruls et al. 1992, Shapiro et al. 2010). Criscuoli (2019) showed how
using the OF coefficients for spectral modeling from atmospheric models other than for
the quiet-sun leads to a significant change in the estimated irradiance variability.

The RH code allows the user to specify OF coefficients freely, and by default, it takes
the OF coefficients determined in Bruls et al. (1992). We have implemented in globin a
possibility to infer pixel-dependent OF coefficients. These coefficients are estimated for
each wavelength point specified by the user between which RH linearly interpolates. The
position of each OF coefficient in a wavelength grid is arbitrary and allows for modelling
strong gradients in the continuum opacity caused by the ionisation edges of metals.

It is expected that OF coefficients will have a cross-talk with the temperature at log τ =
0 because they both impact the continuum level similarly. This will further reflect on the
retrieval of log(g f ) parameter for observed lines because the strength of the line is sensi-
tive to the ratio of line to continuum absorption coefficient. Therefore, we must find a way
to decouple the contribution of OF coefficients and the temperature to the continuum to
allow for reliable retrieval of the log(g f ) parameter of NUV lines. One possibility would
be to include an additional observation at a different wavelength region in inversions con-
taining the true continuum – the continuum intensity, which can be properly modelled
without additional fudging of the continuum opacity.
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4.4 Inference of the elemental abundances
The abundance of chemical elements in other stars is measured in comparison to the abun-
dance of these elements in the Sun, which illustrates the necessity of precise abundance
measurement of elements in the solar atmosphere. The most recent review on the deter-
mination of solar abundances is presented in Asplund et al. (2021), based on matching
a spatially averaged spectrum from a 3D radiative-hydrodynamical atmosphere model to
a spatially averaged disc-center spectrum. Spectral lines of Na, Mg, K, Ca, and Fe are
modelled in NLTE using detailed multi-level atomic models, while lines from other chem-
ical elements are modelled in LTE. All these lines are modelled using a 3D approach in
the solution of the radiative transfer equation. For some spectral lines, the center-to-limb
variation of the spectrum is also used to confirm the quality of the adopted atomic line
parameters (such as log(g f )). All the assumptions used to construct the hydrodynamical
models and synthesize the lines add to the uncertainties of the determined abundances of
chemical elements.

However, it is possible to measure the abundances of different chemical elements
using globin purely based on the observations and thus overcoming the uncertainties
introduced by the selection of the simulations cube. The abundances could be added
as an additional inversion parameter in the coupled method. It will be a challenge to
simultaneously infer log(g f ) and abundance and disentangle their contributions to the line
absorption coefficient, which is logχL ∝ ϵ + log(g f ). As it has already been discussed
in Sec. 1.3.1.3, altering the log(g f ) for some amount will cause the same change for ϵ,
but with opposite sign, thus retaining the same χL. Therefore, we need a way to decouple
these two parameters to infer reliably both. Based on the previous results for log(g f )
inference, we expect that the abundance could be estimated by requiring that at least one
line per chemical element has a known reliable log(g f ). The best strategy would be only
to use lines with reliable log(g f ) values (experimentally measured ones) and determine
the abundance from these lines alone. The same method is already used in Asplund et al.
(2021), but the abundance can vary between lines of the same element. We should aim to
correct the abundance in all lines simultaneously.
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In this thesis, I have developed a new inversion method, called the coupled method, for
inferring coupled atomic line parameters from high spatial and spectral resolution obser-
vations of the solar atmosphere. The main focus was on the log(g f ) parameter describing
the transition probability of a spectral line and ∆λ as uncertainty in the tabulated central
wavelength of a line. The log(g f ) parameter is one of the most important atomic parame-
ters that alters the line strength and strongly impacts the inferred temperature stratification
from observations. The log(g f ) parameter is determined in laboratories (Sec. 1.3.1.1),
from modelling atomic structure (Sec. 1.3.1.2) or from observed stellar and solar spectra
(Sec. 1.3.1.3).

The method developed in this thesis improves the pixel-by-pixel method for inferring
the log(g f ) parameter presented in the work of Trelles Arjona et al. (2021) by introducing
a coupling in atomic line parameters, thus imposing a simultaneous match of the synthetic
spectra on the observed ones. In this way, the atomic line parameters can only vary
simultaneously in all the pixels from an observed field of view. At the same time, this
method allows for the retrieval of the atmospheric parameters in each pixel independently.
The coupling of atomic parameters was necessary to effectively decouple temperature and
log(g f ) and enable the reliable retrieval of both parameters. The coupling of any global
parameter, such as atomic parameters, requires rearranging the response functions for the
inversion parameters, altering the block-diagonal form of the uncoupled global Jacobian
matrix.

The coupled method is implemented in a new inversion code named globin devel-
oped in this thesis. The globin code is built around the RH code used for forward mod-
elling of spectra in NLTE. Parts of the inversion algorithm related to the atmospheric
parametrization are based on the methods already implemented in SNAPI and STiC in-
version codes. The globin code is primarily developed to reliably infer coupled atomic
parameters, which can be used afterwards to infer atmospheric parameters using any other,
more sophisticated and specialized, inversion code. The globin code has been mainly
used and tested for synthesis and inversion of LTE spectra. Since it is built around the RH
code, there is no principle limitation to use globin also for NLTE spectral synthesis and
inversion.

Sec. 3.2 shows the advantages of using the coupled method over the pixel-by-pixel
method on LTE spectra computed from a 3D MHD atmospheric model for selected pix-
els, representing different solar features such as umbrae, penumbrae, granules and inter-
granular lanes. This test showed that coupling in atomic parameters enabled the inversion
algorithm to decouple the contribution of blended lines and reliably infer their log(g f )
and ∆λ parameters. In future work, the plan is to investigate how advantageous it is to
use the coupled method to infer the atomic parameters of un-blended lines compared to
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the pixel-by-pixel method.
The coupled method has already been applied to disc-center spectropolarimetric ob-

servations of a quiet-sun region made by the Hinode/SP instrument. Preliminary globin
inversions of these data indicate that the widely used log(g f ) value of Fe I 6302.5 Å line
is poorly constrained, and it is planned to redetermine it using the coupled method. A
very similar value for the log(g f ) of this line is also obtained by Thevenin (1990) and
Socas-Navarro (2011). Providing the wide solar physics community with the accurate
log(g f ) parameter of this line is of great interest since Hinode/SP observations are used
frequently to study the solar atmosphere.

One of the significant aspects missing in the coupled method is an adequate way of es-
timating the uncertainty of inferred atomic parameters. This is very important to establish
the accuracy of inferred parameters compared to values determined experimentally and
theoretically. One way would be to use the Monte Carlo Markov Chain (MCMC) method
to sample the parameter space and obtain their uncertainties. The MCMC method al-
lows us to better assess the cross-talk between different inversion parameters by properly
sampling the posterior probability distribution.

The development of the coupled method was motivated by the high spatial and spectral
resolution observations in the near ultraviolet (NUV) expected from the instrument Sun-
rise UV Spectropolarimeter and Imager (Feller et al. 2020) onboard the next flight of the
balloon-borne Sunrise observatory which has successfully flown twice before (Solanki
et al. 2010, 2017) and is expected to fly again in June 2024. SUSI will continuously
observe the Sun in the NUV spectral range from 309 nm to 417 nm. Radiation at these
wavelengths is strongly absorbed by the Earth’s atmosphere, which makes it hard to ob-
serve them from the ground. Riethmüller & Solanki (2019) showed many imperfections
of modelled spectra when compared to available observations, one of which is poor atomic
parameters, which must be corrected to better understand the solar atmosphere at these
wavelengths.

The coupled method is general enough to be applied to spectral lines from UV to
infrared formed under the assumption of LTE and NLTE. This method is not limited to
the inference of log(g f ) and ∆λ only; it can easily be extended to infer, e.g., elemental
abundances or to improve an estimate of the continuum opacity correction in UV. The
large number density of spectral lines in the UV hinders the proper line identification and
estimate of the corresponding atomic parameters. We need precise wavelengths of many
spectral lines to correctly identify the lines in line-rich UV spectra. We anticipate that
future improvements in the coupled method could also assist in adequately identifying
many lines and determining their atomic parameters. The improvements in the atomic
parameters are essential for solar physics and the analysis and understanding of stellar
atmospheres.
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Jurčák, J., Schmassmann, M., Rempel, M., Bello González, N., & Schlichenmaier, R.
2020, A&A, 638, A28

Klose, J. Z. 1971, ApJ, 165, 637

Kosugi, T., Matsuzaki, K., Sakao, T., et al. 2007, Sol. Phys., 243, 3

Kramida, A., Yu. Ralchenko, Reader, J., & and NIST ASD Team. 2022, NIST Atomic
Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd
[2023, July 31]. National Institute of Standards and Technology, Gaithersburg, MD.

93



Bibliography

Kurucz, R. & Bell, B. 1995, Atomic Line Data (R.L. Kurucz and B. Bell) Kurucz CD-
ROM No. 23. Cambridge, 23

Kurucz, R. L. 1979, ApJS, 40, 1

Kurucz, R. L. 2002, in American Institute of Physics Conference Series, Vol. 636, Atomic
and Molecular Data and Their Applications, ed. D. R. Schultz, P. S. Krstic, & F. Ownby,
134–143

Kurucz, R. L. & Peytremann, E. 1975, SAO Special Report

Landi Degl’Innocenti, E. & Landi Degl’Innocenti, M. 1977, A&A, 56, 111

Landi Degl’Innocenti, E. & Landolfi, M. 2004, Polarization in Spectral Lines, Vol. 307

Laverick, M. 2019, PhD thesis, KU Luven

Laverick, M., Lobel, A., Royer, P., Martayan, C., & Merle, T. 2017, Canadian Journal of
Physics, 95, 843

Laverick, M., Lobel, A., Royer, P., et al. 2019, A&A, 624, A60

Leenaarts, J., Carlsson, M., & Rouppe van der Voort, L. 2012, ApJ, 749, 136

Leighton, R. B., Noyes, R. W., & Simon, G. W. 1962, ApJ, 135, 474

Levenberg, K. 1944, Quarterly of Applied Mathematics, 2, 164

Lites, B. W., Elmore, D. F., Seagraves, P., & Skumanich, A. P. 1993, ApJ, 418, 928

Marquardt, D. W. 1963, Journal of the Society for Industrial and Applied Mathematics,
11, 431

Martínez Pillet, V., del Toro Iniesta, J. C., Álvarez-Herrero, A., et al. 2011, Sol. Phys.,
268, 57

Martins, L. P., Coelho, P., Caproni, A., & Vitoriano, R. 2014, MNRAS, 442, 1294

Mauas, P. J., Avrett, E. H., & Loeser, R. 1988, ApJ, 330, 1008

Metcalf, T. R. 1994, Sol. Phys., 155, 235
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Below is the list of keywords that can be specified in the params.input file that control
the behaviour of the globin code. The keywords have three types:

required: if the keyword is not provided, the code will raise an InputError.

default: if the keyword is not provided, a default value is assigned to it.

optional: keywords of this type are not required for the code to run.

The keyword type can change depending on the mode in which globin is being run.
Also, there are keywords that are conditioned if some other keyword is provided or not
(for example, keywords for constructing the wavelength grid).

General keywords used for optimal execution of globin

mode : required (int)
mode in which to run globin.

mode = 0: spectral synthesis

mode = 1: pixel-by-pixel inference of atmospheric parameters only

mode = 2: pixel-by-pixel inference of atmospheric and atomic pa-
rameters

mode = 3: pixel-by-pixel inference of atmospheric parameters and
the spatially coupled inference of atomic parameters using the globin
method

Each mode has a set of keywords which are required to be specified in order
to run properly.

n_thread : optional (int) , 1 mode=all
number of CPU threads used to compute the spectra (utilizes multiproc-
essing.Pool() object); if the n_thread is larger than the number of indi-
vidual atmospheres in the input atmospheric model (or pixels in the observed
field of view for mode=1,2,3), n_thread is reduced so that each spawned
process takes one atmosphere.
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The wavelength grid related keywords

wave_min : required/optional (float) mode=all
minimal wavelength used to construct the wavelength grid, in Angstroms.

wave_max : required/optional (float) mode=all
maximal wavelength used to construct the wavelength grid, in Angstroms.

wave_step : required/optional (float) mode=all
sampling of a wavelength grid, in Angstroms.

wave_grid : optional/required (str) mode=all
path to a file with list of wavelengths for which to compute the spectrum (in
nanometers); used if one of wave_min, wave_max or wave_step is omitted.

The keywords referring to the characteristics of observed spectra to
be inverted or to be computed

mu : default (float) , 1.0 mode=all
µ = cos(θ) value for which to compute the spectrum. ValueError is raised
if the value is outside the range (0, 1].

spectrum : default (str) , ’spectrum.fits’ mode=0
output file name of the synthetic spectra (in FITS format).

norm : default , False mode=all
controls the normalization of synthetic spectra. By default, we compute the
spectrum in absolute units W/m2/Hz/srad. Other normalization options are:

norm = 1: the continuum is set to unity by dividing it with the inten-
sity at the first wavelength point.

norm = hsra: the spectrum is normalized with respect to the con-
tinuum intensity (at the first wavelength point) from the HSRA atmo-
spheric model.

norm = Ic: the synthetic spectrum is normalized by dividing it with
Ic value.
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observation : required (str) mode=1,2,3
path to the file containing observations which we intend to invert. We as-
sume that it is provided in FITS file format.

obs_format : default (str) , ’globin’ mode=1,2,3
format of the observation. If obs_format=’globin’, we assume that
the observation has one FITS extension in which an array of full Stokes
vectors along with the wavelengths is provided. The shape of the array is
(nx, ny, nw, 5), where the first element in the last dimension corresponds to
the wavelength. If obs_format=’hinode’, we assume the FITS file has
three extensions. In the first, we have an array of Stokes vectors with shape
(nx, ny, nw, 4). The second one contains the array of wavelengths at which
the Stokes vector is obtained. In the last one, the local continuum intensity
used to normalize the Stokes vector.

range : optional mode=all
mode=0: specifies the range in x and y directions (in pixels) of cube_at-
mosphere for which we want to synthesise spectra. By default, we compute
the spectrum for each atmospheric pixel.

mode=1,2,3: specifies the range in x and y directions (in pixels) of
observation, which we want to invert. By default, we invert the Stokes
spectrum from every pixel.

mean : optional (bool) mode=all
flag controlling the spatial averaging of computed spectra.

noise : default (float) , 10−3 mode=all
expected noise in Stokes profiles; in mode=0 we add random Gaussian noise
to the synthetic spectra; in mode=1,2,3 we scale the merit function (see
Eq. 2.1 and Eq. 2.12).

weights : default (float) , 1,1,1,1 mode=1,2,3
comma-separated weights for each Stokes component used in computing the
χ2. By default, we assume that each Stokes component is equally weighted.

weight_type : optional (str) mode=1,2,3

type of weighting used in computing the χ2 per wavelength. By default,
we use equal weighting. If weight_type=StokesI, the inverse of Stokes
I is used as weighting. This provides more weighting to the line cores, thus
losing the information on the continuum.
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wave_weights : optional (str) mode=1,2,3
path to the file containing wavelength and Stokes dependent weights. The
file is assumed to have five columns: wavelength and weights for each
Stokes component. The wavelength grid in this file has to correspond either
to the constructed wavelength grid using keywords wave_min, wave_max
and wave_step or to those provided in the wave_grid file.

stray_factor : optional (float) mode=all
the amount of stray light to be added to the spectrum; if the provided value
is negative, it will be considered as the inversion parameter. ValueError is
raised if the value is larger than 1.

stray_type : default (str) , ’grey’ mode=all
the type of stray light contamination. By default, we assume wavelength-
uniform stray light (grey straylight). If stray_type = hsra, the stray light
is the spectrum computed using the HSRA atmosphere.

stray_mode : default (int) , 3 mode=all
controls the way in which we apply/infer the stray light contamination.

stray_mode = 0: apply the stray light of stray_type type.

stray_mode = 1,2: infers the pixel dependent stray_factor.

stray_mode = 3: infers the pixel independent stray_factor.

instrumental_profile : optional (str) mode=all
path to the file containing the instrumental profile to be used to convolve
the synthetic spectra. The file has two columns: wavelength in Angstroms
and the instrumental profile. When the instrumental profile is read, it is
normalized and resampled to correspond to the wavelength grid on which
we are synthesizing the spectrum.

The keywords referring to the characteristics of the input atmosphere
used to compute the spectrum or the initial atmosphere in inversion
mode
cube_atmosphere : optional (str) mode=0

path to the file contining an atmospheric model for which we want to synthe-
size spectra. We load the FAL C atmospheric model if cube_atmosphere
is not specified.

reference_atmosphere : optional (str) mode=1,2,3
path to the file containing a reference atmospheric model used to construct
the stratification of atmospheric parameters which are not inferred. We load
the FAL C atmospheric model if reference_atmosphere is not specified.
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initial_atmosphere : optional (str) mode=1,2,3
path to the FITS file format atmosphere, which contains the node positions
and values for each atmospheric parameter that will be used as initial values.
This atmosphere needs to of type atm_type=’globin’.

atm_type : default (str) , ’multi’ mode=all
type of the input atmospheric model (check Sec. 3.1.1).

atm_scale : default (str) , ’tau’ mode=all
type of the scale used to stratify atmospheric parameters.

logtau_top : optional (float) , -6.0 mode=all
top boundary of the atmosphere in log τ5000.

logtau_bot : optional (float) , 1.0 mode=all
bottom boundary of the atmosphere in log τ5000.

logtau_step : optional (float) , 1.0 mode=all
sampling of the log τ5000 grid.

vmac : default (float) , 0 mode=all
macro-turbulent velocity in km/s used to broaden the spectrum; if the pro-
vided value is negative and mode=3, it is considered as the inversion param-
eter.

of_file : optional (str) mode=all
path to a file in which the opacity fudge (OF) coefficients are specified (see
example from Listing B.2). The file has two columns: the first column is
the wavelength in nanometers, and the second one is the OF coefficient at
the given wavelength. It is assumed that the OF changes linearly in wave-
lengths between given points. If there is only one row in the file, we as-
sume that the OF correction is constant over the wavelength grid for which
we are computing the spectra. For two or more rows, the smallest and the
largest wavelength points for the OF correction are assumed to correspond
to the boundaries of the wavelength grid. The OF correction is not applied
to wavelengths outside those provided in of_file.

of_fit_mode : optional (int) mode=all
defines the mode in which we want to apply the opacity fudge (OF) cor-
rection. For of_fit_mode = 0, we only apply the OF from of_file to
the synthetic spectra. For of_fit_mode = 1, we infer pixel-dependent OF
coefficients.
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of_scatt_flag : optional (int) mode=all
controls if the OF correction should also be applied to the scattering coeffi-
cient:

of_scatt_flag=0 : no fudging

of_scatt_flag=1 : apply fudging

RH independently fudges the H− opacity, scattering, and the opacity pro-
duced by metals. By default, the OF correction is applied only to the H−

opacity.

The keywords related to the inversion of atmospheric and atomic pa-
rameters
nodes_parameter : optional mode=1,2,3

comma separated node positions for each atmospheric parameter. In the
keyword name, parameter is substituted by temp for temperature, vz for
line of sight velocity, vmic for micro-turbulent velocity, mag for magnetic
field strength, gamma for magnetic field inclination and chi for magnetic
field azimuth.

nodes_parameter_values : optional mode=1,2,3
comma separated initial values for each node specified in nodes_parame-
ter. The parameter units are temperature in Kelvin, line of sight velocity
and micro-turbulent velocity in km/s, magnetic field strength in Gauss, mag-
netic field inclination and azimuth in degrees.

nodes_parameter_vmin : optional mode=1,2,3
comma separated lower boundary values for each node specified in
nodes_parameter. If a single value is provided, then each node’s lower
boundary is the same. By default, the lower boundary for temperature is
2800 K, line of sight velocity −10 km/s, micro-turbulent velocity 10−3 km/s,
magnetic filed strength 10 G, magnetic field inclination −180◦, and magnetic
field azimuth −360◦.

nodes_parameter_vmax : optional mode=1,2,3
comma separated upper boundary values for each node specified in
nodes_parameter. If a single value is provided, then each node’s upper
boundary is the same. By default, the upper boundary for temperature is
10 000 K, line of sight velocity and micro-turbulent velocity 10 km/s, mag-
netic field strength 10 000 G, magnetic field inclination 360◦, and magnetic
field azimuth 360◦.

nodes_parameter_reg_weight : optional mode=1,2,3
spatial regularization weight for a given parameter. It scales the spa-
tial_regularization_weight because of unit differences between at-
mospheric parameters.
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spatial_regularization_weight : optional (float) mode=3
regularization coefficient that controls the amount of spatial regularization
added to the χ2. ValueError is raised if the provided value is lower than 0.

interp_method : default (str) , ’bezier’ mode=1,2,3
specifies the type of interpolating polynomial used to interpolate between
nodes for the atmospheric parameters. Possible values are ’bezier’ and
’spline’. Bezier interpolation is preferred because of the non-overshooting
characteristic (see Sec. 3.1.2.1 for more details).

interp_degree : default (int) , 3 mode=1,2,3
the degree of polynomial interpolation. Should be either 2 (for quadratic;
supported only for interp_method=’bezier’) or 3 (for cubic).

spline_tension : optional (float) mode=1,2,3
controls the tension of the spline interpolation polynomial: regular cubic
spline is recovered for spline_tension=0. For spline_tension > 50,
we have linear interpolation.

lines2atm : optional (str) mode=1,2,3
path to a file containing information on spectral lines, which will be used to
initialize vLOS and the magnetic field strength. We use the centre-of-gravity
method to estimate vLOS and the weak-field approximation for the magnetic
field. Only the magnetic field strength is estimated, while the inclination
and azimuth are taken from the node_parameter_values. This file has
the following structure: the central wavelength of a line (in nanometers),
wavelength window (in milli Angstroms), effective Landé factor, Landé fac-
tor of the lower and upper level, and J quantum number of the lower and
upper level of a transition.

line_parameters : optional mode=2,3
path to a file containing the atomic line parameters to be inferred. The
file has the following structure: name of the parameter (currently supported
loggf for log(g f ) and ∆λ), line number in the Kurucz line list, initial value,
lower boundary, upper boundary (see Listing B.4).

The keywords related to the Levenberg-Marquardt algorithm

marq_lambda : default (float) , 10 mode=1,2,3
initial value of the Marquardt parameter λM.

max_iter : default (int) , 30 mode=1,2,3
the maximal number of the Levenberg-Marquardt iterations in which inver-
sion parameters are corrected for. For ncycle > 1, we can provide a comma-
separated maximal number of iterations for each cycle or use a single value
for each.
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chi_tolerance : default (float) , 10−3 mode=1,2,3
the relative change of the χ2 for which we stop the Levenberg-Marquard
iteration.

svd_tolerance : default (float) , 10−5 mode=1
the tolerance value used to mask the SVD eigenvalues of the Hessian matrix.
The eigenvalues lower than svd_tolerance are set to zero.

ncycle : default (int) , 1 mode=1,2,3
the number of inversion cycles. Each cycle has max_iter number of itera-
tions. The atmospheric parameters are perturbed between each cycle to kick
the Levenberg-Marquardt algorithm out of the local minimum. The atomic
parameters are not perturbed between iterations.

output_frequency : default , max_itter mode=3
the number of iterations after which the output files will be created (using the
suffix _c0). Useful for checking intermediate results during long inversion
runs.
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File examples used to control the globin code and pyrh module. Additionally, we give
examples of other relevant files that can be specified in params.input file.

Listing B.1. Example of params.input file used for spectral synthesis and applying
the opacity fudge correction specified in of.dat file (see Listing B.2).

1 #--- General parameters
2 mode = 0
3 n_thread = 10
4

5 #--- Spectra related keywords
6 spectrum = spec_4016_muram_50G.fits
7 mu = 1.00
8 noise = 1e-3
9 norm = hsra

10

11 #--- opacity fudge parameters
12 of_fit_mode = 0
13 of_file = of.dat
14 of_scatt_flag = 1
15

16 #--- wavelength grid (in Angstroms)
17 wave_min = 4015.0
18 wave_max = 4017.0
19 wave_step = 0.002
20

21 #--- atmosphere
22 cubic_atmosphere = muram_50G.fits
23 logtau_top = -5
24 vmac = 1.85

Listing B.2. Example of of.dat file referred in Listing B.1.
1 # wavelength OF coeff
2 401.5 0.20
3 401.6 0.17
4 401.7 0.10
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In Listing B.3 we show an example of params.input file that inverts the observations
synthesized in Listing B.1 using the globin method (mode=3). We allow the code to infer
the temperature in four nodes; line of sight velocity, magnetic field strength, inclination
and azimuth in three nodes and the height-independent micro-turbulent velocity. Addi-
tionally, we also infer the macro-turbulent velocity. In this example, we do not invert all
the computed spectra but only for pixels in [1, 10] in the x direction and those in [4, 12] in
the y direction. The atomic line parameters specified in the line_pars_4016 are given
in Listing B.4.

Listing B.3. Example of params.input file used for inversion.
1 #--- general parameters
2 mode = 3
3 n_thread = 1
4

5 #--- spectra/observation related keywords
6 observation = spec_4016_muram_50G.fits
7 obs_format = globin
8 mu = 1.00
9 noise = 1e-3

10 weights = 1, 10, 10, 7
11 norm = hsra
12 range = 1, 10, 4, 12
13

14 #--- opacity fudge parameters
15 of_fit_mode = 0
16 of_file = of.dat
17 of_scatt_flag = 1
18

19 #--- initial atmospheric parameters
20 vmac = -1.0
21

22 nodes_temp = -2.2, -1.5, -0.8, 0
23 nodes_temp_values = 4021, 5442, 6200, 7032
24

25 nodes_vz = -2.2, -1.0, 0
26 nodes_vz_values = -0.2, 0.2
27

28 nodes_vmic = 0
29 nodes_vmic_values = 0.1
30 nodes_vmic_vmin = 0.1
31 nodes_vmic_vmax = 3
32

33 nodes_mag = -2.2, -1.0, 0
34 nodes_mag_values = 150, 150, 250
35 nodes_mag_vmax = 500
36

37 nodes_gamma = -2.2, -1.0, 0
38 nodes_gamma_values = 45, 45, 45
39

40 nodes_chi = -2.2, -1.0, 0
41 nodes_chi_values = 20, 20, 20
42

43 interp_degree = 3
44 interp_method = bezier
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45

46 #--- wavelength grid (in Angstroms)
47 wave_min = 4015.0
48 wave_max = 4017.0
49 wave_step = 0.002
50

51 #--- Levenberg -Marquardt parameters
52 ncycle = 1
53 marq_lambda = 1e1
54 max_iter = 30
55 chi2_tolerance = 1e-3
56

57 #--- line parameters
58 line_parameters = line_pars_4016
59

60 #--- reference atmosphere (optional)
61 reference_atmosphere = holmul.spinor
62 atm_type = spinor
63 logtau_top = -4

Listing B.4. Example of a file containing the atomic line parameters to be inferred.
1 # parID LineNo initial min max
2 loggf 1 -2.309 -4.172 -0.672
3 loggf 2 -2.226 -3.806 -0.306
4 loggf 3 -0.223 -2.084 1.416
5 loggf 4 -0.609 -2.857 0.643
6 loggf 5 -0.919 -2.781 0.719
7 loggf 6 -2.371 -4.419 -0.919
8 loggf 7 0.247 -1.920 1.580
9 loggf 8 -0.672 -2.515 0.985

10 loggf 9 -0.123 -2.087 1.413
11 loggf 10 -2.119 -3.928 -0.428
12 loggf 11 -1.885 -3.870 -0.370
13 loggf 12 -0.649 -2.714 0.786
14 loggf 14 -3.783 -5.513 -2.013
15 loggf 15 -0.986 -3.160 0.370
16 loggf 16 -2.666 -4.905 -1.405
17 loggf 17 -2.620 -4.576 -1.076
18 loggf 18 -0.843 -2.547 0.953
19 dlam 1 10.184 -30.000 22.000
20 dlam 2 3.690 -30.000 22.000
21 dlam 3 -0.358 -30.000 22.000
22 dlam 4 1.545 -30.000 22.000
23 dlam 6 -4.571 -30.000 22.000
24 dlam 7 4.129 -30.000 22.000
25 dlam 9 -2.068 -30.000 22.000
26 dlam 10 -1.523 -30.000 22.000
27 dlam 11 6.368 -30.000 22.000
28 dlam 12 -6.217 -30.000 22.000
29 dlam 14 -3.025 -30.000 22.000
30 dlam 15 -8.857 -30.000 22.000
31 dlam 16 1.442 -30.000 22.000
32 dlam 17 -3.370 -30.000 22.000
33 dlam 18 1.884 -30.000 22.000
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C Comparison of numerical schemes
used to compute the response
function

The computation of the response functions is the most time-consuming part of an in-
version algorithm. The globin code uses the central difference numerical scheme to
compute response functions of inversion parameters, which requires two spectral synthe-
sis per parameter. A simpler and faster approach would be to use the forward difference
numerical scheme, which requires only one spectral synthesis per parameter. Fig. C.1 dis-
plays the comparison between response functions computed using the central and forward
difference methods and their relative difference. These response functions are computed
from the FAL-C atmospheric model having a magnetic field vector with B = 800 G,
θ = 60◦ and ϕ = 30◦. The relative difference between these response functions is less than
O(10−2), which is acceptable for inversion purposes.
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Figure C.1. Comparison between response functions computed using the central dif-
ference method (first column) and the forward difference method (middle column).
Their relative difference in the logarithmic scale is displayed in the last column. We
chose to show the Stokes I response function for temperature (first row), LOS veloc-
ity (second row) and log(g f ) (fourth row) and the Stokes V response function for the
magnetic field strength (third row).
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